Source code for pymc_marketing.mmm.multidimensional

#   Copyright 2022 - 2025 The PyMC Labs Developers
#
#   Licensed under the Apache License, Version 2.0 (the "License");
#   you may not use this file except in compliance with the License.
#   You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
#   Unless required by applicable law or agreed to in writing, software
#   distributed under the License is distributed on an "AS IS" BASIS,
#   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#   See the License for the specific language governing permissions and
#   limitations under the License.
"""Multidimensional Marketing Mix Model (MMM).

Examples
--------
Basic MMM fit:

.. code-block:: python

    from pymc_marketing.mmm import GeometricAdstock, LogisticSaturation
    from pymc_marketing.mmm.multidimensional import MMM
    import pandas as pd

    X = pd.DataFrame(
        {
            "date": pd.date_range("2025-01-01", periods=8, freq="W-MON"),
            "C1": [100, 120, 90, 110, 105, 115, 98, 102],
            "C2": [80, 70, 95, 85, 90, 88, 92, 94],
        }
    )
    y = pd.Series([230, 260, 220, 240, 245, 255, 235, 238], name="y")

    mmm = MMM(
        date_column="date",
        channel_columns=["C1", "C2"],
        target_column="y",
        adstock=GeometricAdstock(l_max=10),
        saturation=LogisticSaturation(),
    )
    mmm.fit(X, y)

    # Optional: posterior predictive and plots
    mmm.sample_posterior_predictive(X)
    _ = mmm.plot.contributions_over_time(var=["channel_contribution"])

Multi-dimensional (panel) with dims:

.. code-block:: python

    X = pd.DataFrame(
        {
            "date": pd.date_range("2025-01-01", periods=4, freq="W-MON"),
            "country": ["A", "A", "B", "B"],
            "C1": [100, 120, 90, 110],
            "C2": [80, 70, 95, 85],
        }
    )
    y = pd.Series([230, 260, 220, 240], name="y")

    mmm = MMM(
        date_column="date",
        channel_columns=["C1", "C2"],
        target_column="y",
        dims=("country",),
        adstock=GeometricAdstock(l_max=10),
        saturation=LogisticSaturation(),
    )
    mmm.fit(X, y)

Time-varying parameters and seasonality:

.. code-block:: python

    from pymc_marketing.mmm import SoftPlusHSGP

    mmm = MMM(
        date_column="date",
        channel_columns=["C1", "C2"],
        target_column="y",
        adstock=GeometricAdstock(l_max=10),
        saturation=LogisticSaturation(),
        time_varying_intercept=True,
        time_varying_media=True,  # or SoftPlusHSGP(...)
        yearly_seasonality=4,
    )
    mmm.fit(X, y)

Controls (additional regressors):

.. code-block:: python

    X["price_index"] = [1.0, 1.02, 0.99, 1.01]
    mmm = MMM(
        date_column="date",
        channel_columns=["C1", "C2"],
        target_column="y",
        control_columns=["price_index"],
        adstock=GeometricAdstock(l_max=10),
        saturation=LogisticSaturation(),
    )
    mmm.fit(X, y)

Events:

.. code-block:: python

    from pymc_extras.prior import Prior
    from pymc_marketing.mmm.events import EventEffect, GaussianBasis
    import pandas as pd

    df_events = pd.DataFrame(
        {
            "name": ["Promo", "Holiday"],
            "start_date": pd.to_datetime(["2025-02-01", "2025-03-20"]),
            "end_date": pd.to_datetime(["2025-02-03", "2025-03-25"]),
        }
    )
    effect = EventEffect(
        basis=GaussianBasis(
            priors={"sigma": Prior("Gamma", mu=7, sigma=1, dims="event")}
        ),
        effect_size=Prior("Normal", mu=0, sigma=1, dims="event"),
        dims=("event",),
    )

    mmm = MMM(
        date_column="date",
        channel_columns=["C1", "C2"],
        target_column="y",
        adstock=GeometricAdstock(l_max=10),
        saturation=LogisticSaturation(),
    )
    mmm.add_events(df_events=df_events, prefix="event", effect=effect)
    mmm.fit(X, y)

Save, load, and plot:

.. code-block:: python

    mmm.save("mmm.nc")
    loaded = MMM.load("mmm.nc")
    _ = loaded.plot.posterior_predictive()

Notes
-----
- X must include `date`, the `channel_columns`, and any extra `dims` columns.
- y is a Series with name equal to `target_column`.
- Call `add_events` before fitting/building.
"""

from __future__ import annotations

import json
import warnings
from collections.abc import Callable, Sequence
from copy import deepcopy
from typing import Annotated, Any, Literal

import arviz as az
import numpy as np
import numpy.typing as npt
import pandas as pd
import pymc as pm
import pytensor.tensor as pt
import xarray as xr
from pydantic import Field, InstanceOf, StrictBool, validate_call
from pymc.model.fgraph import clone_model as cm
from pymc.util import RandomState
from pymc_extras.prior import Prior, create_dim_handler
from scipy.optimize import OptimizeResult

from pymc_marketing.mmm import SoftPlusHSGP
from pymc_marketing.mmm.additive_effect import EventAdditiveEffect, MuEffect
from pymc_marketing.mmm.budget_optimizer import OptimizerCompatibleModelWrapper
from pymc_marketing.mmm.causal import CausalGraphModel
from pymc_marketing.mmm.components.adstock import (
    AdstockTransformation,
    adstock_from_dict,
)
from pymc_marketing.mmm.components.saturation import (
    SaturationTransformation,
    saturation_from_dict,
)
from pymc_marketing.mmm.events import EventEffect
from pymc_marketing.mmm.fourier import YearlyFourier
from pymc_marketing.mmm.hsgp import HSGPBase
from pymc_marketing.mmm.lift_test import (
    add_lift_measurements_to_likelihood_from_saturation,
    scale_lift_measurements,
)
from pymc_marketing.mmm.plot import MMMPlotSuite
from pymc_marketing.mmm.scaling import Scaling, VariableScaling
from pymc_marketing.mmm.sensitivity_analysis import SensitivityAnalysis
from pymc_marketing.mmm.tvp import infer_time_index
from pymc_marketing.mmm.utility import UtilityFunctionType, average_response
from pymc_marketing.mmm.utils import (
    add_noise_to_channel_allocation,
    create_zero_dataset,
)
from pymc_marketing.model_builder import (
    RegressionModelBuilder,
    _handle_deprecate_pred_argument,
)
from pymc_marketing.model_config import parse_model_config
from pymc_marketing.model_graph import deterministics_to_flat

PYMC_MARKETING_ISSUE = "https://github.com/pymc-labs/pymc-marketing/issues/new"
warning_msg = (
    "This functionality is experimental and subject to change. "
    "If you encounter any issues or have suggestions, please raise them at: "
    f"{PYMC_MARKETING_ISSUE}"
)
warnings.warn(warning_msg, FutureWarning, stacklevel=1)


[docs] class MMM(RegressionModelBuilder): """Marketing Mix Model class for estimating the impact of marketing channels on a target variable. This class implements the core functionality of a Marketing Mix Model (MMM), allowing for the specification of various marketing channels, adstock transformations, saturation effects, and time-varying parameters. It provides methods for fitting the model to data, making predictions, and visualizing the results. Attributes ---------- date_column : str The name of the column representing the date in the dataset. channel_columns : list[str] A list of columns representing the marketing channels. target_column : str The name of the column representing the target variable to be predicted. adstock : AdstockTransformation The adstock transformation to apply to the channel data. saturation : SaturationTransformation The saturation transformation to apply to the channel data. time_varying_intercept : bool Whether to use a time-varying intercept in the model. time_varying_media : bool Whether to use time-varying effects for media channels. dims : tuple | None Additional dimensions for the model. scaling : Scaling | dict | None Scaling methods to be used for the target variable and the marketing channels. Defaults to max scaling for both. model_config : dict | None Configuration settings for the model. sampler_config : dict | None Configuration settings for the sampler. control_columns : list[str] | None A list of control variables to include in the model. yearly_seasonality : int | None The number of yearly seasonalities to include in the model. adstock_first : bool Whether to apply adstock transformations before saturation. """ _model_type: str = "MMMM (Multi-Dimensional Marketing Mix Model)" version: str = "0.0.2"
[docs] @validate_call def __init__( self, date_column: str = Field(..., description="Column name of the date variable."), channel_columns: list[str] = Field( min_length=1, description="Column names of the media channel variables." ), target_column: str = Field(..., description="The name of the target column."), adstock: InstanceOf[AdstockTransformation] = Field( ..., description="Type of adstock transformation to apply." ), saturation: InstanceOf[SaturationTransformation] = Field( ..., description="The saturation transformation to apply to the channel data.", ), time_varying_intercept: Annotated[ StrictBool | InstanceOf[HSGPBase], Field( description=( "Whether to use a time-varying intercept, or pass an HSGP instance " "(e.g., SoftPlusHSGP) specifying dims and priors." ), ), ] = False, time_varying_media: Annotated[ StrictBool | InstanceOf[HSGPBase], Field( description=( "Whether to use time-varying media effects, or pass an HSGP instance " "(e.g., SoftPlusHSGP) specifying dims and priors." ), ), ] = False, dims: tuple[str, ...] | None = Field( None, description="Additional dimensions for the model." ), scaling: InstanceOf[Scaling] | dict | None = Field( None, description="Scaling configuration for the model." ), model_config: dict | None = Field( None, description="Configuration settings for the model." ), sampler_config: dict | None = Field( None, description="Configuration settings for the sampler." ), control_columns: Annotated[ list[str] | None, Field( min_length=1, description="A list of control variables to include in the model.", ), ] = None, yearly_seasonality: Annotated[ int | None, Field( gt=0, description="The number of yearly seasonalities to include in the model.", ), ] = None, adstock_first: Annotated[ bool, Field(strict=True, description="Apply adstock before saturation?"), ] = True, dag: str | None = Field( None, description="Optional DAG provided as a string Dot format for causal identification.", ), treatment_nodes: list[str] | tuple[str] | None = Field( None, description="Column names of the variables of interest to identify causal effects on outcome.", ), outcome_node: str | None = Field( None, description="Name of the outcome variable." ), ) -> None: """Define the constructor method.""" # Your existing initialization logic self.control_columns = control_columns self.time_varying_intercept = time_varying_intercept self.time_varying_media = time_varying_media self.date_column = date_column self.adstock = adstock self.saturation = saturation self.adstock_first = adstock_first dims = dims if dims is not None else () self.dims = dims if isinstance(scaling, dict): scaling = deepcopy(scaling) if "channel" not in scaling: scaling["channel"] = VariableScaling(method="max", dims=self.dims) if "target" not in scaling: scaling["target"] = VariableScaling(method="max", dims=self.dims) scaling = Scaling(**scaling) self.scaling: Scaling = scaling or Scaling( target=VariableScaling(method="max", dims=self.dims), channel=VariableScaling(method="max", dims=self.dims), ) if set(self.scaling.target.dims).difference([*self.dims, "date"]): raise ValueError( f"Target scaling dims {self.scaling.target.dims} must contain {self.dims} and 'date'" ) if set(self.scaling.channel.dims).difference([*self.dims, "channel", "date"]): raise ValueError( f"Channel scaling dims {self.scaling.channel.dims} must contain {self.dims}, 'channel', and 'date'" ) model_config = model_config if model_config is not None else {} sampler_config = sampler_config model_config = parse_model_config( model_config, # type: ignore non_distributions=["intercept_tvp_config", "media_tvp_config"], ) if model_config is not None: self.adstock.update_priors({**self.default_model_config, **model_config}) self.saturation.update_priors({**self.default_model_config, **model_config}) self._check_compatible_media_dims() self.date_column = date_column self.target_column = target_column self.channel_columns = channel_columns self.yearly_seasonality = yearly_seasonality # Causal graph configuration self.dag = dag self.treatment_nodes = treatment_nodes self.outcome_node = outcome_node # Initialize causal graph if provided if self.dag is not None and self.outcome_node is not None: if self.treatment_nodes is None: self.treatment_nodes = self.channel_columns warnings.warn( "No treatment nodes provided, using channel columns as treatment nodes.", stacklevel=2, ) self.causal_graphical_model = CausalGraphModel.build_graphical_model( graph=self.dag, treatment=self.treatment_nodes, outcome=self.outcome_node, ) self.control_columns = self.causal_graphical_model.compute_adjustment_sets( control_columns=self.control_columns, channel_columns=self.channel_columns, ) # Only apply yearly seasonality adjustment if an adjustment set was computed if hasattr(self.causal_graphical_model, "adjustment_set") and ( self.causal_graphical_model.adjustment_set is not None ): if ( "yearly_seasonality" not in self.causal_graphical_model.adjustment_set ): warnings.warn( "Yearly seasonality excluded as it's not required for adjustment.", stacklevel=2, ) self.yearly_seasonality = None super().__init__(model_config=model_config, sampler_config=sampler_config) if self.yearly_seasonality is not None: self.yearly_fourier = YearlyFourier( n_order=self.yearly_seasonality, prefix="fourier_mode", prior=self.model_config["gamma_fourier"], variable_name="gamma_fourier", ) self.mu_effects: list[MuEffect] = []
def _check_compatible_media_dims(self) -> None: allowed_dims = set(self.dims).union({"channel"}) if not set(self.adstock.combined_dims).issubset(allowed_dims): raise ValueError( f"Adstock effect dims {self.adstock.combined_dims} must contain {allowed_dims}" ) if not set(self.saturation.combined_dims).issubset(allowed_dims): raise ValueError( f"Saturation effect dims {self.saturation.combined_dims} must contain {allowed_dims}" ) @property def default_sampler_config(self) -> dict: """Default sampler configuration.""" return {} def _data_setter(self, X, y=None): ...
[docs] def add_events( self, df_events: pd.DataFrame, prefix: str, effect: EventEffect, ) -> None: """Add event effects to the model. This must be called before building the model. Parameters ---------- df_events : pd.DataFrame The DataFrame containing the event data. * `name`: name of the event. Used as the model coordinates. * `start_date`: start date of the event * `end_date`: end date of the event prefix : str The prefix to use for the event effect and associated variables. effect : EventEffect The event effect to apply. Raises ------ ValueError If the event effect dimensions do not contain the prefix and model dimensions. """ if not set(effect.dims).issubset((prefix, self.dims)): raise ValueError( f"Event effect dims {effect.dims} must contain {prefix} and {self.dims}" ) event_effect = EventAdditiveEffect( df_events=df_events, prefix=prefix, effect=effect, ) self.mu_effects.append(event_effect)
@property def _serializable_model_config(self) -> dict[str, Any]: def ndarray_to_list(d: dict) -> dict: new_d = d.copy() # Copy the dictionary to avoid mutating the original one for key, value in new_d.items(): if isinstance(value, np.ndarray): new_d[key] = value.tolist() elif isinstance(value, dict): new_d[key] = ndarray_to_list(value) return new_d serializable_config = self.model_config.copy() return ndarray_to_list(serializable_config)
[docs] def create_idata_attrs(self) -> dict[str, str]: """Return the idata attributes for the model.""" attrs = super().create_idata_attrs() attrs["dims"] = json.dumps(self.dims) attrs["date_column"] = self.date_column attrs["adstock"] = json.dumps(self.adstock.to_dict()) attrs["saturation"] = json.dumps(self.saturation.to_dict()) attrs["adstock_first"] = json.dumps(self.adstock_first) attrs["control_columns"] = json.dumps(self.control_columns) attrs["channel_columns"] = json.dumps(self.channel_columns) attrs["yearly_seasonality"] = json.dumps(self.yearly_seasonality) attrs["time_varying_intercept"] = json.dumps(self.time_varying_intercept) attrs["time_varying_media"] = json.dumps(self.time_varying_media) attrs["target_column"] = self.target_column attrs["scaling"] = json.dumps(self.scaling.model_dump(mode="json")) attrs["dag"] = json.dumps(getattr(self, "dag", None)) attrs["treatment_nodes"] = json.dumps(getattr(self, "treatment_nodes", None)) attrs["outcome_node"] = json.dumps(getattr(self, "outcome_node", None)) return attrs
@classmethod def _model_config_formatting(cls, model_config: dict) -> dict: """Format the model configuration. Because of json serialization, model_config values that were originally tuples or numpy are being encoded as lists. This function converts them back to tuples and numpy arrays to ensure correct id encoding. Parameters ---------- model_config : dict The model configuration to format. Returns ------- dict The formatted model configuration. """ def format_nested_dict(d: dict) -> dict: for key, value in d.items(): if isinstance(value, dict): d[key] = format_nested_dict(value) elif isinstance(value, list): # Check if the key is "dims" to convert it to tuple if key == "dims": d[key] = tuple(value) # Convert all other lists to numpy arrays else: d[key] = np.array(value) return d return format_nested_dict(model_config.copy())
[docs] @classmethod def attrs_to_init_kwargs(cls, attrs: dict[str, str]) -> dict[str, Any]: """Convert the idata attributes to the model initialization kwargs.""" return { "model_config": cls._model_config_formatting( json.loads(attrs["model_config"]) ), "date_column": attrs["date_column"], "control_columns": json.loads(attrs["control_columns"]), "channel_columns": json.loads(attrs["channel_columns"]), "adstock": adstock_from_dict(json.loads(attrs["adstock"])), "saturation": saturation_from_dict(json.loads(attrs["saturation"])), "adstock_first": json.loads(attrs.get("adstock_first", "true")), "yearly_seasonality": json.loads(attrs["yearly_seasonality"]), "time_varying_intercept": json.loads( attrs.get("time_varying_intercept", "false") ), "target_column": attrs["target_column"], "time_varying_media": json.loads(attrs.get("time_varying_media", "false")), "sampler_config": json.loads(attrs["sampler_config"]), "dims": tuple(json.loads(attrs.get("dims", "[]"))), "scaling": json.loads(attrs.get("scaling", "null")), "dag": json.loads(attrs.get("dag", "null")), "treatment_nodes": json.loads(attrs.get("treatment_nodes", "null")), "outcome_node": json.loads(attrs.get("outcome_node", "null")), }
@property def plot(self) -> MMMPlotSuite: """Use the MMMPlotSuite to plot the results.""" self._validate_model_was_built() self._validate_idata_exists() return MMMPlotSuite(idata=self.idata) @property def default_model_config(self) -> dict: """Define the default model configuration.""" base_config = { "intercept": Prior("Normal", mu=0, sigma=2, dims=self.dims), "likelihood": Prior( "Normal", sigma=Prior("HalfNormal", sigma=2, dims=self.dims), dims=self.dims, ), "gamma_control": Prior("Normal", mu=0, sigma=2, dims="control"), "gamma_fourier": Prior( "Laplace", mu=0, b=1, dims=(*self.dims, "fourier_mode") ), } if self.time_varying_intercept: base_config["intercept_tvp_config"] = {"ls_lower": 0.3, "ls_upper": 2.0} if self.time_varying_media: base_config["media_tvp_config"] = {"ls_lower": 0.3, "ls_upper": 2.0} return { **base_config, **self.adstock.model_config, **self.saturation.model_config, } @property def output_var(self) -> Literal["y"]: """Define target variable for the model. Returns ------- str The target variable for the model. """ return "y"
[docs] def post_sample_model_transformation(self) -> None: """Post-sample model transformation in order to store the HSGP state from fit.""" names = [] if self.time_varying_intercept: names.extend( SoftPlusHSGP.deterministics_to_replace("intercept_latent_process") ) if self.time_varying_media: names.extend( SoftPlusHSGP.deterministics_to_replace( "media_temporal_latent_multiplier" ) ) if not names: return self.model = deterministics_to_flat(self.model, names=names)
def _validate_idata_exists(self) -> None: """Validate that the idata exists.""" if not hasattr(self, "idata"): raise ValueError("idata does not exist. Build the model first and fit.") def _validate_dims_in_multiindex( self, index: pd.MultiIndex, dims: tuple[str, ...], date_column: str ) -> list[str]: """Validate that dimensions exist in the MultiIndex. Parameters ---------- index : pd.MultiIndex The MultiIndex to check dims : tuple[str, ...] The dimensions to validate date_column : str The name of the date column Returns ------- list[str] List of valid dimensions found in the index Raises ------ ValueError If date_column is not in the index """ if date_column not in index.names: raise ValueError(f"date_column '{date_column}' not found in index") valid_dims = [dim for dim in dims if dim in index.names] return valid_dims def _validate_dims_in_dataframe( self, df: pd.DataFrame, dims: tuple[str, ...], date_column: str ) -> list[str]: """Validate that dimensions exist in the DataFrame columns. Parameters ---------- df : pd.DataFrame The DataFrame to check dims : tuple[str, ...] The dimensions to validate date_column : str The name of the date column Returns ------- list[str] List of valid dimensions found in the DataFrame Raises ------ ValueError If date_column is not in the DataFrame """ if date_column not in df.columns: raise ValueError(f"date_column '{date_column}' not found in DataFrame") valid_dims = [dim for dim in dims if dim in df.columns] return valid_dims def _validate_metrics( self, data: pd.DataFrame | pd.Series, metric_list: list[str] ) -> list[str]: """Validate that metrics exist in the data. Parameters ---------- data : pd.DataFrame | pd.Series The data to check metric_list : list[str] The metrics to validate Returns ------- list[str] List of valid metrics found in the data """ if isinstance(data, pd.DataFrame): return [metric for metric in metric_list if metric in data.columns] else: # pd.Series return [metric for metric in metric_list if metric in data.index.names] def _process_multiindex_series( self, series: pd.Series, date_column: str, valid_dims: list[str], metric_coordinate_name: str, ) -> xr.Dataset: """Process a MultiIndex Series into an xarray Dataset. Parameters ---------- series : pd.Series The MultiIndex Series to process date_column : str The name of the date column valid_dims : list[str] List of valid dimensions metric_coordinate_name : str Name for the metric coordinate Returns ------- xr.Dataset The processed xarray Dataset """ # Reset index to get a DataFrame with all index levels as columns df = series.reset_index() # The series values become the metric values df_long = pd.DataFrame( { **{col: df[col] for col in [date_column, *valid_dims]}, metric_coordinate_name: series.name, f"_{metric_coordinate_name}": series.values, } ) # Drop duplicates to avoid non-unique MultiIndex df_long = df_long.drop_duplicates( subset=[date_column, *valid_dims, metric_coordinate_name] ) # Convert to xarray, renaming date_column to "date" for internal consistency if valid_dims: df_long = df_long.rename(columns={date_column: "date"}) return df_long.set_index( ["date", *valid_dims, metric_coordinate_name] ).to_xarray() df_long = df_long.rename(columns={date_column: "date"}) return df_long.set_index(["date", metric_coordinate_name]).to_xarray() def _process_dataframe( self, df: pd.DataFrame, date_column: str, valid_dims: list[str], valid_metrics: list[str], metric_coordinate_name: str, ) -> xr.Dataset: """Process a DataFrame into an xarray Dataset. Parameters ---------- df : pd.DataFrame The DataFrame to process date_column : str The name of the date column valid_dims : list[str] List of valid dimensions valid_metrics : list[str] List of valid metrics metric_coordinate_name : str Name for the metric coordinate Returns ------- xr.Dataset The processed xarray Dataset """ # Reshape DataFrame to long format df_long = df.melt( id_vars=[date_column, *valid_dims], value_vars=valid_metrics, var_name=metric_coordinate_name, value_name=f"_{metric_coordinate_name}", ) # Drop duplicates to avoid non-unique MultiIndex df_long = df_long.drop_duplicates( subset=[date_column, *valid_dims, metric_coordinate_name] ) # Convert to xarray, renaming date_column to "date" for internal consistency df_long = df_long.rename(columns={date_column: "date"}) if valid_dims: return df_long.set_index( ["date", *valid_dims, metric_coordinate_name] ).to_xarray() return df_long.set_index(["date", metric_coordinate_name]).to_xarray() def _create_xarray_from_pandas( self, data: pd.DataFrame | pd.Series, date_column: str, dims: tuple[str, ...], metric_list: list[str], metric_coordinate_name: str, ) -> xr.Dataset: """Create an xarray Dataset from a DataFrame or Series. This method handles both DataFrame and MultiIndex Series inputs, reshaping them into a long format and converting into an xarray Dataset. It validates dimensions and metrics, ensuring they exist in the input data. Parameters ---------- data : pd.DataFrame | pd.Series The input data to transform date_column : str The name of the date column dims : tuple[str, ...] The dimensions to include metric_list : list[str] List of metrics to include metric_coordinate_name : str Name for the metric coordinate in the output Returns ------- xr.Dataset The transformed data in xarray format Raises ------ ValueError If date_column is not found in the data """ # Validate dimensions based on input type if isinstance(data, pd.Series): valid_dims = self._validate_dims_in_multiindex( index=data.index, # type: ignore dims=dims, # type: ignore date_column=date_column, # type: ignore ) return self._process_multiindex_series( series=data, date_column=date_column, valid_dims=valid_dims, metric_coordinate_name=metric_coordinate_name, ) else: # pd.DataFrame valid_dims = self._validate_dims_in_dataframe( df=data, dims=dims, date_column=date_column, # type: ignore ) valid_metrics = self._validate_metrics(data, metric_list) return self._process_dataframe( df=data, date_column=date_column, valid_dims=valid_dims, valid_metrics=valid_metrics, metric_coordinate_name=metric_coordinate_name, ) def _generate_and_preprocess_model_data( self, X: pd.DataFrame, # type: ignore y: pd.Series, # type: ignore ): self.X = X # type: ignore self.y = y # type: ignore dataarrays = [] X_dataarray = self._create_xarray_from_pandas( data=X, date_column=self.date_column, dims=self.dims, metric_list=self.channel_columns, metric_coordinate_name="channel", ) dataarrays.append(X_dataarray) # Create a temporary DataFrame to properly handle the y data transformation temp_y_df = pd.concat([self.X[[self.date_column, *self.dims]], self.y], axis=1) y_dataarray = self._create_xarray_from_pandas( data=temp_y_df.set_index([self.date_column, *self.dims])[ self.target_column ], date_column=self.date_column, dims=self.dims, metric_list=[self.target_column], metric_coordinate_name="target", ).sum("target") dataarrays.append(y_dataarray) if self.control_columns is not None: control_dataarray = self._create_xarray_from_pandas( data=X, date_column=self.date_column, dims=self.dims, metric_list=self.control_columns, metric_coordinate_name="control", ) dataarrays.append(control_dataarray) self.xarray_dataset = xr.merge(dataarrays).fillna(0) self.model_coords = { dim: self.xarray_dataset.coords[dim].values for dim in self.xarray_dataset.coords.dims } if bool(self.time_varying_intercept) or bool(self.time_varying_media): self._time_index = np.arange(0, X[self.date_column].unique().shape[0]) self._time_index_mid = X[self.date_column].unique().shape[0] // 2 self._time_resolution = ( X[self.date_column].iloc[1] - X[self.date_column].iloc[0] ).days
[docs] def forward_pass( self, x: pt.TensorVariable | npt.NDArray[np.float64], dims: tuple[str, ...], ) -> pt.TensorVariable: """Transform channel input into target contributions of each channel. This method handles the ordering of the adstock and saturation transformations. This method must be called from without a pm.Model context but not necessarily in the instance's model. A dim named "channel" is required associated with the number of columns of `x`. Parameters ---------- x : pt.TensorVariable | npt.NDArray[np.float64] The channel input which could be spends or impressions Returns ------- The contributions associated with the channel input Examples -------- >>> mmm = MMM( date_column="date_week", channel_columns=["channel_1", "channel_2"], target_column="target", ) """ first, second = ( (self.adstock, self.saturation) if self.adstock_first else (self.saturation, self.adstock) ) return second.apply(x=first.apply(x=x, dims=dims), dims=dims)
def _compute_scales(self) -> None: """Compute and save scaling factors for channels and target.""" self.scalers = xr.Dataset() channel_method = getattr( self.xarray_dataset["_channel"], self.scaling.channel.method, ) self.scalers["_channel"] = channel_method( dim=("date", *self.scaling.channel.dims) ) target_method = getattr( self.xarray_dataset["_target"], self.scaling.target.method, ) self.scalers["_target"] = target_method(dim=("date", *self.scaling.target.dims))
[docs] def get_scales_as_xarray(self) -> dict[str, xr.DataArray]: """Return the saved scaling factors as xarray DataArrays. Returns ------- dict[str, xr.DataArray] A dictionary containing the scaling factors for channels and target. Examples -------- >>> mmm = MMM( date_column="date_week", channel_columns=["channel_1", "channel_2"], target_column="target", ) >>> mmm.build_model(X, y) >>> mmm.get_scales_as_xarray() """ if not hasattr(self, "scalers"): raise ValueError( "Scales have not been computed yet. Build the model first." ) return { "channel_scale": self.scalers._channel, "target_scale": self.scalers._target, }
def _validate_model_was_built(self) -> None: """Validate that the model was built.""" if not hasattr(self, "model"): raise ValueError( "Model was not built. Build the model first using MMM.build_model()" ) def _validate_contribution_variable(self, var: str) -> None: """Validate that the variable ends with "_contribution" and is in the model.""" if not (var.endswith("_contribution") or var == "y"): raise ValueError(f"Variable {var} must end with '_contribution' or be 'y'") if var not in self.model.named_vars: raise ValueError(f"Variable {var} is not in the model")
[docs] def add_original_scale_contribution_variable(self, var: list[str]) -> None: """Add a pm.Deterministic variable to the model that multiplies by the scaler. Restricted to the model parameters. Only make it possible for "_contribution" variables. Parameters ---------- var : list[str] The variables to add the original scale contribution variable. Examples -------- >>> model.add_original_scale_contribution_variable( >>> var=["channel_contribution", "total_media_contribution", "y"] >>> ) """ self._validate_model_was_built() target_dims = self.scalers._target.dims with self.model: for v in var: self._validate_contribution_variable(v) var_dims = self.model.named_vars_to_dims[v] mmm_dims_order = ("date", *self.dims) if v == "channel_contribution": mmm_dims_order += ("channel",) elif v == "control_contribution": mmm_dims_order += ("control",) deterministic_dims = tuple( [ dim for dim in mmm_dims_order if dim in set(target_dims).union(var_dims) ] ) dim_handler = create_dim_handler(deterministic_dims) pm.Deterministic( name=v + "_original_scale", var=dim_handler(self.model[v], var_dims) * dim_handler( self.model["target_scale"], target_dims, ), dims=deterministic_dims, )
[docs] def build_model( # type: ignore[override] self, X: pd.DataFrame, y: pd.Series | np.ndarray, **kwargs, ) -> None: """Build a probabilistic model using PyMC for marketing mix modeling. The model incorporates channels, control variables, and Fourier components, applying adstock and saturation transformations to the channel data. The final model is constructed with multiple factors contributing to the response variable. Parameters ---------- X : pd.DataFrame The input data for the model, which should include columns for channels, control variables (if applicable), and Fourier components (if applicable). y : Union[pd.Series, np.ndarray] The target/response variable for the modeling. **kwargs : dict Additional keyword arguments that might be required by underlying methods or utilities. Attributes Set --------------- model : pm.Model The PyMC model object containing all the defined stochastic and deterministic variables. Examples -------- Initialize model with custom configuration .. code-block:: python from pymc_marketing.mmm import GeometricAdstock, LogisticSaturation from pymc_marketing.mmm.multidimensional import MMM from pymc_extras.prior import Prior custom_config = { "intercept": Prior("Normal", mu=0, sigma=2), "saturation_beta": Prior("Gamma", mu=1, sigma=3), "saturation_lambda": Prior("Beta", alpha=3, beta=1), "adstock_alpha": Prior("Beta", alpha=1, beta=3), "likelihood": Prior("Normal", sigma=Prior("HalfNormal", sigma=2)), "gamma_control": Prior("Normal", mu=0, sigma=2, dims="control"), "gamma_fourier": Prior("Laplace", mu=0, b=1, dims="fourier_mode"), } model = MMM( date_column="date_week", channel_columns=["x1", "x2"], adstock=GeometricAdstock(l_max=8), saturation=LogisticSaturation(), control_columns=[ "event_1", "event_2", "t", ], yearly_seasonality=2, model_config=custom_config, ) """ self._generate_and_preprocess_model_data( X=X, # type: ignore y=y, # type: ignore ) # Compute and save scales self._compute_scales() with pm.Model( coords=self.model_coords, ) as self.model: _channel_scale = pm.Data( "channel_scale", self.scalers._channel.values, dims=self.scalers._channel.dims, ) _target_scale = pm.Data( "target_scale", self.scalers._target, dims=self.scalers._target.dims, ) _channel_data = pm.Data( name="channel_data", value=self.xarray_dataset._channel.transpose( "date", *self.dims, "channel" ).values, dims=("date", *self.dims, "channel"), ) _target = pm.Data( name="target_data", value=( self.xarray_dataset._target.transpose("date", *self.dims).values ), dims=("date", *self.dims), ) # Scale `channel_data` and `target` channel_dim_handler = create_dim_handler(("date", *self.dims, "channel")) channel_data_ = _channel_data / channel_dim_handler( _channel_scale, self.scalers._channel.dims, ) channel_data_ = pt.switch(pt.isnan(channel_data_), 0.0, channel_data_) channel_data_.name = "channel_data_scaled" channel_data_.dims = ("date", *self.dims, "channel") target_dim_handler = create_dim_handler(("date", *self.dims)) target_data_scaled = _target / target_dim_handler( _target_scale, self.scalers._target.dims ) target_data_scaled.name = "target_scaled" target_data_scaled.dims = ("date", *self.dims) ## TODO: Find a better way to save it or access it in the pytensor graph. self.target_data_scaled = target_data_scaled for mu_effect in self.mu_effects: mu_effect.create_data(self) if bool(self.time_varying_intercept) or bool(self.time_varying_media): time_index = pm.Data( name="time_index", value=self._time_index, dims="date", ) # Add intercept logic if ( isinstance(self.time_varying_intercept, bool) and self.time_varying_intercept ): intercept_baseline = self.model_config["intercept"].create_variable( "intercept_baseline" ) intercept_latent_process = SoftPlusHSGP.parameterize_from_data( X=time_index, dims=("date", *self.dims), **self.model_config["intercept_tvp_config"], ).create_variable("intercept_latent_process") intercept = pm.Deterministic( name="intercept_contribution", var=intercept_baseline[None, ...] * intercept_latent_process, dims=("date", *self.dims), ) elif isinstance(self.time_varying_intercept, HSGPBase): intercept_baseline = self.model_config["intercept"].create_variable( "intercept_baseline" ) # Register internal time index and build latent process self.time_varying_intercept.register_data(time_index) intercept_latent_process = self.time_varying_intercept.create_variable( "intercept_latent_process" ) intercept = pm.Deterministic( name="intercept_contribution", var=intercept_baseline[None, ...] * intercept_latent_process, dims=("date", *self.dims), ) else: intercept = self.model_config["intercept"].create_variable( name="intercept_contribution" ) # Add media logic if isinstance(self.time_varying_media, bool) and self.time_varying_media: baseline_channel_contribution = pm.Deterministic( name="baseline_channel_contribution", var=self.forward_pass( x=channel_data_, dims=(*self.dims, "channel") ), dims=("date", *self.dims, "channel"), ) media_latent_process = SoftPlusHSGP.parameterize_from_data( X=time_index, dims=("date", *self.dims), **self.model_config["media_tvp_config"], ).create_variable("media_temporal_latent_multiplier") channel_contribution = pm.Deterministic( name="channel_contribution", var=baseline_channel_contribution * media_latent_process[..., None], dims=("date", *self.dims, "channel"), ) elif isinstance(self.time_varying_media, HSGPBase): baseline_channel_contribution = self.forward_pass( x=channel_data_, dims=(*self.dims, "channel") ) baseline_channel_contribution.name = "baseline_channel_contribution" baseline_channel_contribution.dims = ( "date", *self.dims, "channel", ) # Register internal time index and build latent process self.time_varying_media.register_data(time_index) media_latent_process = self.time_varying_media.create_variable( "media_temporal_latent_multiplier" ) # Determine broadcasting over channel axis media_dims = pm.modelcontext(None).named_vars_to_dims[ media_latent_process.name ] if "channel" in media_dims: media_broadcast = media_latent_process else: media_broadcast = media_latent_process[..., None] channel_contribution = pm.Deterministic( name="channel_contribution", var=baseline_channel_contribution * media_broadcast, dims=("date", *self.dims, "channel"), ) else: channel_contribution = pm.Deterministic( name="channel_contribution", var=self.forward_pass( x=channel_data_, dims=(*self.dims, "channel") ), dims=("date", *self.dims, "channel"), ) dim_handler = create_dim_handler(("date", *self.dims)) pm.Deterministic( name="total_media_contribution_original_scale", var=( channel_contribution.sum(axis=-1) * dim_handler(_target_scale, self.scalers._target.dims) ).sum(), dims=(), ) # Add other contributions and likelihood mu_var = intercept + channel_contribution.sum(axis=-1) if self.control_columns is not None and len(self.control_columns) > 0: gamma_control = self.model_config["gamma_control"].create_variable( name="gamma_control" ) control_data_ = pm.Data( name="control_data", value=self.xarray_dataset._control.transpose( "date", *self.dims, "control" ).values, dims=("date", *self.dims, "control"), ) control_contribution = pm.Deterministic( name="control_contribution", var=control_data_ * gamma_control, dims=("date", *self.dims, "control"), ) mu_var += control_contribution.sum(axis=-1) if self.yearly_seasonality is not None: dayofyear = pm.Data( name="dayofyear", value=pd.to_datetime( self.model_coords["date"] ).dayofyear.to_numpy(), dims="date", ) def create_deterministic(x: pt.TensorVariable) -> None: pm.Deterministic( "fourier_contribution", x, dims=("date", *self.yearly_fourier.prior.dims), ) yearly_seasonality_contribution = pm.Deterministic( name="yearly_seasonality_contribution", var=self.yearly_fourier.apply( dayofyear, result_callback=create_deterministic ), dims=("date", *self.dims), ) mu_var += yearly_seasonality_contribution for mu_effect in self.mu_effects: mu_var += mu_effect.create_effect(self) mu_var.name = "mu" mu_var.dims = ("date", *self.dims) self.model_config["likelihood"].dims = ("date", *self.dims) self.model_config["likelihood"].create_likelihood_variable( name=self.output_var, mu=mu_var, observed=target_data_scaled, )
def _validate_date_overlap_with_include_last_observations( self, X: pd.DataFrame, include_last_observations: bool ) -> None: """Validate that include_last_observations is not used with overlapping dates. Parameters ---------- X : pd.DataFrame The input data for prediction. include_last_observations : bool Whether to include the last observations of the training data. Raises ------ ValueError If include_last_observations=True and input dates overlap with training dates. """ if not include_last_observations: return # Get training dates and input dates training_dates = pd.to_datetime(self.model_coords["date"]) input_dates = pd.to_datetime(X[self.date_column].unique()) # Check for overlap overlapping_dates = set(training_dates).intersection(set(input_dates)) if overlapping_dates: overlapping_dates_str = ", ".join( sorted([str(d.date()) for d in overlapping_dates]) ) raise ValueError( f"Cannot use include_last_observations=True when input dates overlap with training dates. " f"Overlapping dates found: {overlapping_dates_str}. " f"Either set include_last_observations=False or use input dates that don't overlap with training data." ) def _posterior_predictive_data_transformation( self, X: pd.DataFrame, y: pd.Series | None = None, include_last_observations: bool = False, ) -> xr.Dataset: """Transform the data for posterior predictive sampling. Parameters ---------- X : pd.DataFrame The input data for prediction. y : pd.Series, optional The target data for prediction. include_last_observations : bool, optional Whether to include the last observations of the training data for continuity. Returns ------- xr.Dataset The transformed data in xarray format. """ # Validate that include_last_observations is not used with overlapping dates self._validate_date_overlap_with_include_last_observations( X, include_last_observations ) dataarrays = [] if include_last_observations: last_obs = self.xarray_dataset.isel(date=slice(-self.adstock.l_max, None)) dataarrays.append(last_obs) # Transform X and y_pred to xarray X_xarray = self._create_xarray_from_pandas( data=X, date_column=self.date_column, dims=self.dims, metric_list=self.channel_columns, metric_coordinate_name="channel", ).transpose("date", *self.dims, "channel") dataarrays.append(X_xarray) if self.control_columns is not None: control_dataarray = self._create_xarray_from_pandas( data=X, date_column=self.date_column, dims=self.dims, metric_list=self.control_columns, metric_coordinate_name="control", ).transpose("date", *self.dims, "control") dataarrays.append(control_dataarray) if y is not None: y_xarray = ( self._create_xarray_from_pandas( data=y, date_column=self.date_column, dims=self.dims, metric_list=[self.target_column], metric_coordinate_name="target", ) .sum("target") .transpose("date", *self.dims) ) else: # Return empty xarray with same dimensions as the target but full of zeros # Use the same dtype as the existing target data to avoid dtype mismatches target_dtype = self.xarray_dataset._target.dtype y_xarray = xr.DataArray( np.zeros( ( X[self.date_column].nunique(), *[len(self.xarray_dataset.coords[dim]) for dim in self.dims], ), dtype=target_dtype, ), dims=("date", *self.dims), coords={ "date": X[self.date_column].unique(), **{dim: self.xarray_dataset.coords[dim] for dim in self.dims}, }, name="_target", ).to_dataset() dataarrays.append(y_xarray) self.dataarrays = dataarrays self._new_internal_xarray = xr.merge(dataarrays).fillna(0) return xr.merge(dataarrays).fillna(0) def _set_xarray_data( self, dataset_xarray: xr.Dataset, clone_model: bool = True, ) -> pm.Model: """Set xarray data into the model. Parameters ---------- dataset_xarray : xr.Dataset Input data for channels and other variables. clone_model : bool, optional Whether to clone the model. Defaults to True. Returns ------- None """ model = cm(self.model) if clone_model else self.model # Get channel data and handle dtype conversion channel_values = dataset_xarray._channel.transpose( "date", *self.dims, "channel" ) if "channel_data" in model.named_vars: original_dtype = model.named_vars["channel_data"].type.dtype channel_values = channel_values.astype(original_dtype) data = {"channel_data": channel_values} coords = self.model.coords.copy() coords["date"] = dataset_xarray["date"].to_numpy() if "_control" in dataset_xarray: control_values = dataset_xarray["_control"].transpose( "date", *self.dims, "control" ) if "control_data" in model.named_vars: original_dtype = model.named_vars["control_data"].type.dtype control_values = control_values.astype(original_dtype) data["control_data"] = control_values coords["control"] = dataset_xarray["control"].to_numpy() if self.yearly_seasonality is not None: data["dayofyear"] = dataset_xarray["date"].dt.dayofyear.to_numpy() if self.time_varying_intercept or self.time_varying_media: data["time_index"] = infer_time_index( pd.Series(dataset_xarray["date"]), pd.Series(self.model_coords["date"]), self._time_resolution, ) if "_target" in dataset_xarray: target_values = dataset_xarray._target.transpose("date", *self.dims) # Get the original dtype from the model's shared variable if "target_data" in model.named_vars: original_dtype = model.named_vars["target_data"].type.dtype # Convert to the original dtype to avoid precision loss errors data["target_data"] = target_values.astype(original_dtype) else: data["target_data"] = target_values self.new_updated_data = data self.new_updated_coords = coords self.new_updated_model = model with model: pm.set_data(data, coords=coords) return model
[docs] def sample_posterior_predictive( self, X: pd.DataFrame | None = None, # type: ignore extend_idata: bool = True, # type: ignore combined: bool = True, # type: ignore include_last_observations: bool = False, # type: ignore clone_model: bool = True, # type: ignore **sample_posterior_predictive_kwargs, # type: ignore ) -> xr.DataArray: """Sample from the model's posterior predictive distribution. Parameters ---------- X : pd.DataFrame Input data for prediction, with the same structure as the training data. y : pd.Series, optional Optional target data for validation or alignment. Default is None. extend_idata : bool, optional Whether to add predictions to the inference data object. Defaults to True. combined : bool, optional Combine chain and draw dimensions into a single sample dimension. Defaults to True. include_last_observations : bool, optional Whether to include the last observations of the training data for continuity (useful for adstock transformations). Defaults to False. clone_model : bool, optional Whether to clone the model. Defaults to True. **sample_posterior_predictive_kwargs Additional arguments for `pm.sample_posterior_predictive`. Returns ------- xr.DataArray Posterior predictive samples. """ X = _handle_deprecate_pred_argument(X, "X", sample_posterior_predictive_kwargs) # Update model data with xarray if X is None: raise ValueError("X values must be provided") dataset_xarray = self._posterior_predictive_data_transformation( X=X, include_last_observations=include_last_observations, ) model = self._set_xarray_data( dataset_xarray=dataset_xarray, clone_model=clone_model, ) for mu_effect in self.mu_effects: mu_effect.set_data(self, model, dataset_xarray) with model: # Sample from posterior predictive post_pred = pm.sample_posterior_predictive( self.idata, **sample_posterior_predictive_kwargs ) if extend_idata: self.idata.extend(post_pred, join="right") # type: ignore group = "posterior_predictive" posterior_predictive_samples = az.extract(post_pred, group, combined=combined) if include_last_observations: # Remove extra observations used for adstock continuity posterior_predictive_samples = posterior_predictive_samples.isel( date=slice(self.adstock.l_max, None) ) return posterior_predictive_samples
@property def sensitivity(self) -> SensitivityAnalysis: """Access sensitivity analysis functionality. Returns a SensitivityAnalysis instance that can be used to run counterfactual sweeps on the model. Returns ------- SensitivityAnalysis An instance configured with this MMM model. Examples -------- >>> mmm.sensitivity.run_sweep( ... var_names=["channel_1", "channel_2"], ... sweep_values=np.linspace(0.5, 2.0, 10), ... sweep_type="multiplicative", ... ) """ return SensitivityAnalysis(mmm=self) def _make_channel_transform( self, df_lift_test: pd.DataFrame ) -> Callable[[np.ndarray], np.ndarray]: """Create a function for transforming the channel data into the same scale as in the model. Parameters ---------- df_lift_test : pd.DataFrame Lift test measurements. Returns ------- Callable[[np.ndarray], np.ndarray] The function for scaling the channel data. """ # The transformer will be passed a np.ndarray of data corresponding to this index. index_cols = [*list(self.dims), "channel"] # We reconstruct the input dataframe following the transformations performed within # `lift_test.scale_channel_lift_measurements()``. input_df = ( df_lift_test.loc[:, [*index_cols, "x", "delta_x"]] .set_index(index_cols, append=True) .stack() .unstack(level=-2) .reindex(self.channel_columns, axis=1) # type: ignore .fillna(0) ) def channel_transform(input: np.ndarray) -> np.ndarray: """Transform lift test channel data to the same scale as in the model.""" # reconstruct the df corresponding to the input np.ndarray. reconstructed = ( pd.DataFrame(data=input, index=input_df.index, columns=input_df.columns) .stack() .unstack(level=-2) ) return ( ( # Scale the data according to the scaler coords. reconstructed.to_xarray() / self.scalers._channel ) .to_dataframe() .fillna(0) .stack() .unstack(level=-2) .loc[input_df.index, :] .values ) # Finally return the scaled data as a np.ndarray corresponding to the input index order. return channel_transform def _make_target_transform( self, df_lift_test: pd.DataFrame ) -> Callable[[np.ndarray], np.ndarray]: """Create a function for transforming the target measurements into the same scale as in the model. Parameters ---------- df_lift_test : pd.DataFrame Lift test measurements. Returns ------- Callable[[np.ndarray], np.ndarray] The function for scaling the target data. """ # These are the same order as in the original lift test measurements. index_cols = [*list(self.dims), "channel"] input_idx = df_lift_test.set_index(index_cols, append=True).index def target_transform(input: np.ndarray) -> np.ndarray: """Transform lift test measurements and sigma to the same scale as in the model.""" # Reconstruct the input df column with the correct index. reconstructed = pd.DataFrame( data=input, index=input_idx, columns=["target"] ) return ( ( # Scale the measurements. reconstructed.to_xarray() / self.scalers._target ) .to_dataframe() .loc[input_idx, :] .values ) # Finally, return the scaled measurements as a np.ndarray corresponding to # the input index order. return target_transform
[docs] def add_lift_test_measurements( self, df_lift_test: pd.DataFrame, dist: type[pm.Distribution] = pm.Gamma, name: str = "lift_measurements", ) -> None: """Add lift tests to the model. The model for the difference of a channel's saturation curve is created from `x` and `x + delta_x` for each channel. This random variable is then conditioned using the empirical lift, `delta_y`, and `sigma` of the lift test with the specified distribution `dist`. The pseudo-code for the lift test is as follows: .. code-block:: python model_estimated_lift = saturation_curve(x + delta_x) - saturation_curve(x) empirical_lift = delta_y dist(abs(model_estimated_lift), sigma=sigma, observed=abs(empirical_lift)) The model has to be built before adding the lift tests. Parameters ---------- df_lift_test : pd.DataFrame DataFrame with lift test results with at least the following columns: * `DIM_NAME`: dimension name. One column per dimension in `mmm.dims`. * `channel`: channel name. Must be present in `channel_columns`. * `x`: x axis value of the lift test. * `delta_x`: change in x axis value of the lift test. * `delta_y`: change in y axis value of the lift test. * `sigma`: standard deviation of the lift test. dist : pm.Distribution, optional The distribution to use for the likelihood, by default pm.Gamma name : str, optional The name of the likelihood of the lift test contribution(s), by default "lift_measurements". Name change required if calling this method multiple times. Raises ------ RuntimeError If the model has not been built yet. KeyError If the 'channel' column or any of the model dimensions is not present in df_lift_test. Examples -------- Build the model first then add lift test measurements. .. code-block:: python import pandas as pd import numpy as np from pymc_marketing.mmm import GeometricAdstock, LogisticSaturation from pymc_marketing.mmm.multidimensional import MMM model = MMM( date_column="date", channel_columns=["x1", "x2"], target_column="target", adstock=GeometricAdstock(l_max=8), saturation=LogisticSaturation(), yearly_seasonality=2, dims=("geo",), ) X = pd.DataFrame( { "date": np.tile( pd.date_range(start="2025-01-01", end="2025-05-01", freq="W"), 2 ), "x1": np.random.rand(34), "x2": np.random.rand(34), "target": np.random.rand(34), "geo": 17 * ["FIN"] + 17 * ["SWE"], } ) y = X["target"] model.build_model(X.drop(columns=["target"]), y) df_lift_test = pd.DataFrame( { "channel": ["x1", "x1"], "geo": ["FIN", "SWE"], "x": [1, 1], "delta_x": [0.1, 0.2], "delta_y": [0.1, 0.1], "sigma": [0.1, 0.1], } ) model.add_lift_test_measurements(df_lift_test) """ if not hasattr(self, "model"): raise RuntimeError( "The model has not been built yet. Please, build the model first." ) if "channel" not in df_lift_test.columns: raise KeyError( "The 'channel' column is required to map the lift measurements to the model." ) for dim in self.dims: if dim not in df_lift_test.columns: raise KeyError( f"The {dim} column is required to map the lift measurements to the model." ) # Function to scale "delta_y", and "sigma" to same scale as target in model. target_transform = self._make_target_transform(df_lift_test) # Function to scale "x" and "delta_x" to the same scale as their respective channels. channel_transform = self._make_channel_transform(df_lift_test) df_lift_test_scaled = scale_lift_measurements( df_lift_test=df_lift_test, channel_col="channel", channel_columns=self.channel_columns, # type: ignore channel_transform=channel_transform, target_transform=target_transform, dim_cols=list(self.dims), ) # This is coupled with the name of the # latent process Deterministic time_varying_var_name = ( "media_temporal_latent_multiplier" if self.time_varying_media else None ) add_lift_measurements_to_likelihood_from_saturation( df_lift_test=df_lift_test_scaled, saturation=self.saturation, time_varying_var_name=time_varying_var_name, model=self.model, dist=dist, name=name, )
[docs] def create_sample_kwargs( sampler_config: dict[str, Any] | None, progressbar: bool | None, random_seed: RandomState | None, **kwargs, ) -> dict[str, Any]: """Create the dictionary of keyword arguments for `pm.sample`. Parameters ---------- sampler_config : dict | None The configuration dictionary for the sampler. If None, defaults to an empty dict. progressbar : bool, optional Whether to show the progress bar during sampling. Defaults to True. random_seed : RandomState, optional The random seed for the sampler. **kwargs : Any Additional keyword arguments to pass to the sampler. Returns ------- dict The dictionary of keyword arguments for `pm.sample`. """ # Ensure sampler_config is a dictionary sampler_config = sampler_config.copy() if sampler_config is not None else {} # Handle progress bar configuration sampler_config["progressbar"] = ( progressbar if progressbar is not None else sampler_config.get("progressbar", True) ) # Add random seed if provided if random_seed is not None: sampler_config["random_seed"] = random_seed # Update with additional keyword arguments sampler_config.update(kwargs) return sampler_config
[docs] class MultiDimensionalBudgetOptimizerWrapper(OptimizerCompatibleModelWrapper): """Wrapper for the BudgetOptimizer to handle multi-dimensional model."""
[docs] def __init__(self, model: MMM, start_date: str, end_date: str): self.model_class = model self.start_date = start_date self.end_date = end_date # Compute the number of periods to allocate budget for self.zero_data = create_zero_dataset( model=self.model_class, start_date=start_date, end_date=end_date, include_carryover=False, ) self.num_periods = len(self.zero_data[self.model_class.date_column].unique()) # Adding missing dependencies for compatibility with BudgetOptimizer self._channel_scales = 1.0
def __getattr__(self, name): """Delegate attribute access to the wrapped MMM model.""" try: # First, try to get the attribute from the wrapper itself return object.__getattribute__(self, name) except AttributeError: # If not found, delegate to the wrapped model try: return getattr(self.model_class, name) except AttributeError as e: # Raise an AttributeError if the attribute is not found in either raise AttributeError( f"'{type(self).__name__}' object and its wrapped 'MMM' object have no attribute '{name}'" ) from e def _set_predictors_for_optimization(self, num_periods: int) -> pm.Model: """Return the respective PyMC model with any predictors set for optimization.""" # Use the model's method for transformation dataset_xarray = self._posterior_predictive_data_transformation( X=self.zero_data, include_last_observations=False, ) # Use the model's method to set data pymc_model = self._set_xarray_data( dataset_xarray=dataset_xarray, clone_model=True, # Ensure we work on a clone ) # Use the model's mu_effects and set data using the model instance for mu_effect in self.mu_effects: mu_effect.set_data(self, pymc_model, dataset_xarray) return pymc_model
[docs] def optimize_budget( self, budget: float | int, budget_bounds: xr.DataArray | None = None, response_variable: str = "total_media_contribution_original_scale", utility_function: UtilityFunctionType = average_response, constraints: Sequence[dict[str, Any]] = (), default_constraints: bool = True, budgets_to_optimize: xr.DataArray | None = None, budget_distribution_over_period: xr.DataArray | None = None, callback: bool = False, **minimize_kwargs, ) -> ( tuple[xr.DataArray, OptimizeResult] | tuple[xr.DataArray, OptimizeResult, list[dict[str, Any]]] ): """Optimize the budget allocation for the model. Parameters ---------- budget : float | int Total budget to allocate. budget_bounds : xr.DataArray | None Budget bounds per channel. response_variable : str Response variable to optimize. utility_function : UtilityFunctionType Utility function to maximize. constraints : Sequence[dict[str, Any]] Custom constraints for the optimizer. default_constraints : bool Whether to add default constraints. budgets_to_optimize : xr.DataArray | None Mask defining which budgets to optimize. budget_distribution_over_period : xr.DataArray | None Distribution factors for budget allocation over time. Should have dims ("date", *budget_dims) where date dimension has length num_periods. Values along date dimension should sum to 1 for each combination of other dimensions. If None, budget is distributed evenly across periods. callback : bool Whether to return callback information tracking optimization progress. **minimize_kwargs Additional arguments for the optimizer. Returns ------- tuple Optimal budgets and optimization result. If callback=True, also returns a list of dictionaries with optimization information at each iteration. """ from pymc_marketing.mmm.budget_optimizer import BudgetOptimizer allocator = BudgetOptimizer( num_periods=self.num_periods, utility_function=utility_function, response_variable=response_variable, custom_constraints=constraints, default_constraints=default_constraints, budgets_to_optimize=budgets_to_optimize, budget_distribution_over_period=budget_distribution_over_period, model=self, # Pass the wrapper instance itself to the BudgetOptimizer ) return allocator.allocate_budget( total_budget=budget, budget_bounds=budget_bounds, callback=callback, **minimize_kwargs, )
def _apply_budget_distribution_pattern( self, data_with_noise: pd.DataFrame, budget_distribution: xr.DataArray, ) -> pd.DataFrame: """Apply budget distribution pattern to noisy data. This method multiplies the channel values in data_with_noise by the corresponding values in budget_distribution, aligning by date, dimensions, and channels. Works like a left join where all dimensions must match. Parameters ---------- data_with_noise : pd.DataFrame DataFrame with noise added to channel allocations. budget_distribution : xr.DataArray Distribution factors with dims ("date", *budget_dims) and "channel". Returns ------- pd.DataFrame The data_with_noise DataFrame with channel values multiplied by the distribution pattern where dimensions match. """ # Set index to match the expected dimensions index_cols = [self.date_column, *list(self.dims)] # Store original index to restore later original_index = data_with_noise.index # Set MultiIndex for proper alignment data_with_noise_indexed = data_with_noise.set_index(index_cols) # Convert DataFrame channel columns to xarray data_xr = data_with_noise_indexed[self.channel_columns].to_xarray() # Stack channel columns into a 'channel' dimension to match budget_distribution format data_xr_stacked = data_xr.to_array(dim="channel") # Rename date column to 'date' for consistency with budget_distribution if self.date_column != "date": data_xr_stacked = data_xr_stacked.rename({self.date_column: "date"}) # Handle date coordinate alignment # If budget_distribution has integer date indices, map them to actual dates if np.issubdtype(budget_distribution.coords["date"].dtype, np.integer): # Get unique dates from data_xr_stacked unique_dates = pd.to_datetime(data_xr_stacked.coords["date"].values) unique_dates_sorted = sorted(unique_dates.unique()) # Map integer indices to actual dates date_mapping = {i: date for i, date in enumerate(unique_dates_sorted)} # Create new coordinates with actual dates new_coords = dict(budget_distribution.coords) new_coords["date"] = [ date_mapping[i] for i in budget_distribution.coords["date"].values ] # Recreate budget_distribution with new date coordinates _budget_distribution = xr.DataArray( budget_distribution.values, dims=budget_distribution.dims, coords=new_coords, ) else: # If dates are already in the correct format, use as is _budget_distribution = budget_distribution # Multiply by budget distribution (xarray will automatically align dimensions) # Only matching channels and dates will be multiplied data_xr_multiplied = data_xr_stacked * (_budget_distribution * self.num_periods) # Convert back to DataFrame format # First unstack the channel dimension data_xr_unstacked = data_xr_multiplied.to_dataset(dim="channel") # Rename 'date' back to original date column name if needed if self.date_column != "date": data_xr_unstacked = data_xr_unstacked.rename({"date": self.date_column}) # Convert to DataFrame multiplied_df = data_xr_unstacked.to_dataframe() # Update the channel columns in the indexed DataFrame for channel in self.channel_columns: if channel in multiplied_df.columns: data_with_noise_indexed.loc[:, channel] = multiplied_df[channel] # Reset to original index structure data_with_noise = data_with_noise_indexed.reset_index() data_with_noise.index = original_index return data_with_noise def _apply_carryover_effect( self, data_with_noise: pd.DataFrame, ) -> pd.DataFrame: """Apply carryover effect by zeroing out last observations. Parameters ---------- data_with_noise : pd.DataFrame DataFrame with channel allocations Returns ------- pd.DataFrame DataFrame with carryover effect applied """ from pymc_marketing.mmm.utils import _convert_frequency_to_timedelta # Get date series and infer frequency date_series = pd.to_datetime(data_with_noise[self.date_column]) inferred_freq = pd.infer_freq(date_series.unique()) if inferred_freq is None: # fall-back if inference fails warnings.warn( f"Could not infer frequency from '{self.date_column}'. Using weekly ('W').", UserWarning, stacklevel=2, ) inferred_freq = "W" # Calculate the cutoff date cutoff_date = data_with_noise[ self.date_column ].max() - _convert_frequency_to_timedelta(self.adstock.l_max, inferred_freq) # Zero out channel values after the cutoff date data_with_noise.loc[ data_with_noise[self.date_column] > cutoff_date, self.channel_columns, ] = 0 return data_with_noise
[docs] def sample_response_distribution( self, allocation_strategy: xr.DataArray, noise_level: float = 0.001, additional_var_names: list[str] | None = None, include_last_observations: bool = False, include_carryover: bool = True, budget_distribution_over_period: xr.DataArray | None = None, ) -> az.InferenceData: """Generate synthetic dataset and sample posterior predictive based on allocation. Parameters ---------- allocation_strategy : DataArray The allocation strategy for the channels. noise_level : float The relative level of noise to add to the data allocation. additional_var_names : list[str] | None Additional variable names to include in the posterior predictive sampling. include_last_observations : bool Whether to include the last observations for continuity. include_carryover : bool Whether to include carryover effects. budget_distribution_over_period : xr.DataArray | None Distribution factors for budget allocation over time. Should have dims ("date", *budget_dims) where date dimension has length num_periods. Values along date dimension should sum to 1 for each combination of other dimensions. If provided, multiplies the noise values by this distribution. Returns ------- az.InferenceData The posterior predictive samples based on the synthetic dataset. """ data = create_zero_dataset( model=self, start_date=self.start_date, end_date=self.end_date, channel_xr=allocation_strategy.to_dataset(dim="channel"), include_carryover=include_carryover, ) data_with_noise = add_noise_to_channel_allocation( df=data, channels=self.channel_columns, rel_std=noise_level, seed=42, ) # Apply budget distribution pattern if provided if budget_distribution_over_period is not None: data_with_noise = self._apply_budget_distribution_pattern( data_with_noise=data_with_noise, budget_distribution=budget_distribution_over_period, ) if include_carryover: data_with_noise = self._apply_carryover_effect(data_with_noise) constant_data = allocation_strategy.to_dataset(name="allocation") _dataset = data_with_noise.set_index([self.date_column, *list(self.dims)])[ self.channel_columns ].to_xarray() var_names = [ "y", "channel_contribution", "total_media_contribution_original_scale", ] if additional_var_names is not None: var_names.extend(additional_var_names) return ( self.sample_posterior_predictive( X=data_with_noise, extend_idata=False, include_last_observations=include_last_observations, var_names=var_names, progressbar=False, ) .merge(constant_data) .merge(_dataset) )