# Copyright 2022 - 2025 The PyMC Labs Developers
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MMM related plotting class.
Examples
--------
Quickstart with MMM:
.. code-block:: python
from pymc_marketing.mmm import GeometricAdstock, LogisticSaturation
from pymc_marketing.mmm.multidimensional import MMM
import pandas as pd
# Minimal dataset
X = pd.DataFrame(
{
"date": pd.date_range("2025-01-01", periods=12, freq="W-MON"),
"C1": [100, 120, 90, 110, 105, 115, 98, 102, 108, 111, 97, 109],
"C2": [80, 70, 95, 85, 90, 88, 92, 94, 91, 89, 93, 87],
}
)
y = pd.Series(
[230, 260, 220, 240, 245, 255, 235, 238, 242, 246, 233, 249], name="y"
)
mmm = MMM(
date_column="date",
channel_columns=["C1", "C2"],
target_column="y",
adstock=GeometricAdstock(l_max=10),
saturation=LogisticSaturation(),
)
mmm.fit(X, y)
mmm.sample_posterior_predictive(X)
# Posterior predictive time series
_ = mmm.plot.posterior_predictive(var=["y"], hdi_prob=0.9)
# Posterior contributions over time (e.g., channel_contribution)
_ = mmm.plot.contributions_over_time(var=["channel_contribution"], hdi_prob=0.9)
# Channel saturation scatter plot (scaled space by default)
_ = mmm.plot.saturation_scatterplot(original_scale=False)
Wrap a custom PyMC model
--------
Requirements
- posterior_predictive plots: an `az.InferenceData` with a `posterior_predictive` group
containing the variable(s) you want to plot with a `date` coordinate.
- contributions_over_time plots: a `posterior` group with time‑series variables (with `date`).
- saturation plots: a `constant_data` dataset with variables:
- `channel_data`: dims include `("date", "channel", ...)`
- `channel_scale`: dims include `("channel", ...)`
- `target_scale`: scalar or broadcastable to the curve dims
and a `posterior` variable named `channel_contribution` (or
`channel_contribution_original_scale` if plotting `original_scale=True`).
.. code-block:: python
import numpy as np
import pandas as pd
import pymc as pm
from pymc_marketing.mmm.plot import MMMPlotSuite
dates = pd.date_range("2025-01-01", periods=30, freq="D")
y_obs = np.random.normal(size=len(dates))
with pm.Model(coords={"date": dates}):
sigma = pm.HalfNormal("sigma", 1.0)
pm.Normal("y", 0.0, sigma, observed=y_obs, dims="date")
idata = pm.sample_prior_predictive(random_seed=1)
idata.extend(pm.sample(draws=200, chains=2, tune=200, random_seed=1))
idata.extend(pm.sample_posterior_predictive(idata, random_seed=1))
plot = MMMPlotSuite(idata)
_ = plot.posterior_predictive(var=["y"], hdi_prob=0.9)
Custom contributions_over_time
--------
.. code-block:: python
import numpy as np
import pandas as pd
import pymc as pm
from pymc_marketing.mmm.plot import MMMPlotSuite
dates = pd.date_range("2025-01-01", periods=30, freq="D")
x = np.linspace(0, 2 * np.pi, len(dates))
series = np.sin(x)
with pm.Model(coords={"date": dates}):
pm.Deterministic("component", series, dims="date")
idata = pm.sample_prior_predictive(random_seed=2)
idata.extend(pm.sample(draws=50, chains=1, tune=0, random_seed=2))
plot = MMMPlotSuite(idata)
_ = plot.contributions_over_time(var=["component"], hdi_prob=0.9)
Saturation plots with a custom model
--------
.. code-block:: python
import numpy as np
import pandas as pd
import xarray as xr
import pymc as pm
from pymc_marketing.mmm.plot import MMMPlotSuite
dates = pd.date_range("2025-01-01", periods=20, freq="W-MON")
channels = ["C1", "C2"]
# Create constant_data required for saturation plots
channel_data = xr.DataArray(
np.random.rand(len(dates), len(channels)),
dims=("date", "channel"),
coords={"date": dates, "channel": channels},
name="channel_data",
)
channel_scale = xr.DataArray(
np.ones(len(channels)),
dims=("channel",),
coords={"channel": channels},
name="channel_scale",
)
target_scale = xr.DataArray(1.0, name="target_scale")
# Build a toy model that yields a matching posterior var
with pm.Model(coords={"date": dates, "channel": channels}):
# A fake contribution over time per channel (dims must include date & channel)
contrib = pm.Normal("channel_contribution", 0.0, 1.0, dims=("date", "channel"))
idata = pm.sample_prior_predictive(random_seed=3)
idata.extend(pm.sample(draws=50, chains=1, tune=0, random_seed=3))
# Attach constant_data to idata
idata.constant_data = xr.Dataset(
{
"channel_data": channel_data,
"channel_scale": channel_scale,
"target_scale": target_scale,
}
)
plot = MMMPlotSuite(idata)
_ = plot.saturation_scatterplot(original_scale=False)
Notes
-----
- `MMM` exposes this suite via the `mmm.plot` property, which internally passes the model's
`idata` into `MMMPlotSuite`.
- Any PyMC model can use `MMMPlotSuite` directly if its `InferenceData` contains the needed
groups/variables described above.
"""
import itertools
from collections.abc import Iterable
import arviz as az
import matplotlib.pyplot as plt
import numpy as np
import xarray as xr
from matplotlib.axes import Axes
from matplotlib.figure import Figure
from numpy.typing import NDArray
__all__ = ["MMMPlotSuite"]
[docs]
class MMMPlotSuite:
"""Media Mix Model Plot Suite.
Provides methods for visualizing the posterior predictive distribution,
contributions over time, and saturation curves for a Media Mix Model.
"""
[docs]
def __init__(
self,
idata: xr.Dataset | az.InferenceData,
):
self.idata = idata
def _init_subplots(
self,
n_subplots: int,
ncols: int = 1,
width_per_col: float = 10.0,
height_per_row: float = 4.0,
) -> tuple[Figure, NDArray[Axes]]:
"""Initialize a grid of subplots.
Parameters
----------
n_subplots : int
Number of rows (if ncols=1) or total subplots.
ncols : int
Number of columns in the subplot grid.
width_per_col : float
Width (in inches) for each column of subplots.
height_per_row : float
Height (in inches) for each row of subplots.
Returns
-------
fig : matplotlib.figure.Figure
The created Figure object.
axes : np.ndarray of matplotlib.axes.Axes
2D array of axes of shape (n_subplots, ncols).
"""
fig, axes = plt.subplots(
nrows=n_subplots,
ncols=ncols,
figsize=(width_per_col * ncols, height_per_row * n_subplots),
squeeze=False,
)
return fig, axes
def _build_subplot_title(
self,
dims: list[str],
combo: tuple,
fallback_title: str = "Time Series",
) -> str:
"""Build a subplot title string from dimension names and their values."""
if dims:
title_parts = [f"{d}={v}" for d, v in zip(dims, combo, strict=False)]
return ", ".join(title_parts)
return fallback_title
def _get_additional_dim_combinations(
self,
data: xr.Dataset,
variable: str,
ignored_dims: set[str],
) -> tuple[list[str], list[tuple]]:
"""Identify dimensions to plot over and get their coordinate combinations."""
if variable not in data:
raise ValueError(f"Variable '{variable}' not found in the dataset.")
all_dims = list(data[variable].dims)
additional_dims = [d for d in all_dims if d not in ignored_dims]
if additional_dims:
additional_coords = [data.coords[d].values for d in additional_dims]
dim_combinations = list(itertools.product(*additional_coords))
else:
# If no extra dims, just treat as a single combination
dim_combinations = [()]
return additional_dims, dim_combinations
def _reduce_and_stack(
self, data: xr.DataArray, dims_to_ignore: set[str] | None = None
) -> xr.DataArray:
"""Sum over leftover dims and stack chain+draw into sample if present."""
if dims_to_ignore is None:
dims_to_ignore = {"date", "chain", "draw", "sample"}
leftover_dims = [d for d in data.dims if d not in dims_to_ignore]
if leftover_dims:
data = data.sum(dim=leftover_dims)
# Combine chain+draw into 'sample' if both exist
if "chain" in data.dims and "draw" in data.dims:
data = data.stack(sample=("chain", "draw"))
return data
def _get_posterior_predictive_data(
self,
idata: xr.Dataset | None,
) -> xr.Dataset:
"""Retrieve the posterior_predictive group from either provided or self.idata."""
if idata is not None:
return idata
# Otherwise, check if self.idata has posterior_predictive
if (
not hasattr(self.idata, "posterior_predictive") # type: ignore
or self.idata.posterior_predictive is None # type: ignore
):
raise ValueError(
"No posterior_predictive data found in 'self.idata'. "
"Please run 'MMM.sample_posterior_predictive()' or provide "
"an external 'idata' argument."
)
return self.idata.posterior_predictive # type: ignore
def _add_median_and_hdi(
self, ax: Axes, data: xr.DataArray, var: str, hdi_prob: float = 0.85
) -> Axes:
"""Add median and HDI to the given axis."""
median = data.median(dim="sample") if "sample" in data.dims else data.median()
hdi = az.hdi(
data,
hdi_prob=hdi_prob,
input_core_dims=[["sample"]] if "sample" in data.dims else None,
)
if "date" not in data.dims:
raise ValueError(f"Expected 'date' dimension in {var}, but none found.")
dates = data.coords["date"].values
# Add median and HDI to the plot
ax.plot(dates, median, label=var, alpha=0.9)
ax.fill_between(dates, hdi[var][..., 0], hdi[var][..., 1], alpha=0.2)
return ax
# ------------------------------------------------------------------------
# Main Plotting Methods
# ------------------------------------------------------------------------
[docs]
def posterior_predictive(
self,
var: list[str] | None = None,
idata: xr.Dataset | None = None,
hdi_prob: float = 0.85,
) -> tuple[Figure, NDArray[Axes]]:
"""Plot time series from the posterior predictive distribution.
By default, if both `var` and `idata` are not provided, uses
`self.idata.posterior_predictive` and defaults the variable to `["y"]`.
Parameters
----------
var : list of str, optional
A list of variable names to plot. Default is ["y"] if not provided.
idata : xarray.Dataset, optional
The posterior predictive dataset to plot. If not provided, tries to
use `self.idata.posterior_predictive`.
hdi_prob: float, optional
The probability mass of the highest density interval to be displayed. Default is 0.85.
Returns
-------
fig : matplotlib.figure.Figure
The Figure object containing the subplots.
axes : np.ndarray of matplotlib.axes.Axes
Array of Axes objects corresponding to each subplot row.
Raises
------
ValueError
If no `idata` is provided and `self.idata.posterior_predictive` does
not exist, instructing the user to run `MMM.sample_posterior_predictive()`.
If `hdi_prob` is not between 0 and 1, instructing the user to provide a valid value.
"""
if not 0 < hdi_prob < 1:
raise ValueError("HDI probability must be between 0 and 1.")
# 1. Retrieve or validate posterior_predictive data
pp_data = self._get_posterior_predictive_data(idata)
# 2. Determine variables to plot
if var is None:
var = ["y"]
main_var = var[0]
# 3. Identify additional dims & get all combos
ignored_dims = {"chain", "draw", "date", "sample"}
additional_dims, dim_combinations = self._get_additional_dim_combinations(
data=pp_data, variable=main_var, ignored_dims=ignored_dims
)
# 4. Prepare subplots
fig, axes = self._init_subplots(n_subplots=len(dim_combinations), ncols=1)
# 5. Loop over dimension combinations
for row_idx, combo in enumerate(dim_combinations):
ax = axes[row_idx][0]
# Build indexers
indexers = (
dict(zip(additional_dims, combo, strict=False))
if additional_dims
else {}
)
# 6. Plot each requested variable
for v in var:
if v not in pp_data:
raise ValueError(
f"Variable '{v}' not in the posterior_predictive dataset."
)
data = pp_data[v].sel(**indexers)
# Sum leftover dims, stack chain+draw if needed
data = self._reduce_and_stack(data, ignored_dims)
ax = self._add_median_and_hdi(ax, data, v, hdi_prob=hdi_prob)
# 7. Subplot title & labels
title = self._build_subplot_title(
dims=additional_dims,
combo=combo,
fallback_title="Posterior Predictive Time Series",
)
ax.set_title(title)
ax.set_xlabel("Date")
ax.set_ylabel("Posterior Predictive")
ax.legend(loc="best")
return fig, axes
[docs]
def contributions_over_time(
self,
var: list[str],
hdi_prob: float = 0.85,
) -> tuple[Figure, NDArray[Axes]]:
"""Plot the time-series contributions for each variable in `var`.
showing the median and the credible interval (default 85%).
Creates one subplot per combination of non-(chain/draw/date) dimensions
and places all variables on the same subplot.
Parameters
----------
var : list of str
A list of variable names to plot from the posterior.
hdi_prob: float, optional
The probability mass of the highest density interval to be displayed. Default is 0.85.
Returns
-------
fig : matplotlib.figure.Figure
The Figure object containing the subplots.
axes : np.ndarray of matplotlib.axes.Axes
Array of Axes objects corresponding to each subplot row.
Raises
------
ValueError
If `hdi_prob` is not between 0 and 1, instructing the user to provide a valid value.
"""
if not 0 < hdi_prob < 1:
raise ValueError("HDI probability must be between 0 and 1.")
if not hasattr(self.idata, "posterior"):
raise ValueError(
"No posterior data found in 'self.idata'. "
"Please ensure 'self.idata' contains a 'posterior' group."
)
main_var = var[0]
all_dims = list(self.idata.posterior[main_var].dims) # type: ignore
ignored_dims = {"chain", "draw", "date"}
additional_dims = [d for d in all_dims if d not in ignored_dims]
coords = {
key: value.to_numpy()
for key, value in self.idata.posterior[var].coords.items()
}
# Identify combos
if additional_dims:
additional_coords = [
self.idata.posterior.coords[dim].values # type: ignore
for dim in additional_dims # type: ignore
]
dim_combinations = list(itertools.product(*additional_coords))
else:
dim_combinations = [()]
# Prepare subplots
fig, axes = self._init_subplots(len(dim_combinations), ncols=1)
# Loop combos
for row_idx, combo in enumerate(dim_combinations):
ax = axes[row_idx][0]
indexers = (
dict(zip(additional_dims, combo, strict=False))
if additional_dims
else {}
)
# Plot posterior median and HDI for each var
for v in var:
data = self.idata.posterior[v]
missing_coords = {
key: value for key, value in coords.items() if key not in data.dims
}
data = data.expand_dims(**missing_coords)
data = data.sel(**indexers) # type: ignore
data = self._reduce_and_stack(
data, dims_to_ignore={"date", "chain", "draw", "sample"}
)
ax = self._add_median_and_hdi(ax, data, v, hdi_prob=hdi_prob)
title = self._build_subplot_title(
dims=additional_dims, combo=combo, fallback_title="Time Series"
)
ax.set_title(title)
ax.set_xlabel("Date")
ax.set_ylabel("Posterior Value")
ax.legend(loc="best")
return fig, axes
[docs]
def saturation_scatterplot(
self, original_scale: bool = False, **kwargs
) -> tuple[Figure, NDArray[Axes]]:
"""Plot the saturation curves for each channel.
Creates one subplot per combination of non-(date/channel) dimensions
and places all channels on the same subplot.
"""
if not hasattr(self.idata, "constant_data"):
raise ValueError(
"No 'constant_data' found in 'self.idata'. "
"Please ensure 'self.idata' contains the constant_data group."
)
# Identify additional dimensions beyond 'date' and 'channel'
cdims = self.idata.constant_data.channel_data.dims
additional_dims = [dim for dim in cdims if dim not in ("date", "channel")]
# Get all possible combinations
if additional_dims:
additional_coords = [
self.idata.constant_data.coords[d].values for d in additional_dims
]
additional_combinations = list(itertools.product(*additional_coords))
else:
additional_combinations = [()]
# Channel in original_scale if selected
channel_contribution = (
"channel_contribution_original_scale"
if original_scale
else "channel_contribution"
)
if original_scale and not hasattr(self.idata.posterior, channel_contribution):
raise ValueError(
f"""No posterior.{channel_contribution} data found in 'self.idata'.
Add a original scale deterministic:
mmm.add_original_scale_contribution_variable(
var=[
"channel_contribution",
...
]
)
"""
)
# Rows = channels, Columns = additional_combinations
channels = self.idata.constant_data.coords["channel"].values
n_rows = len(channels)
n_columns = len(additional_combinations)
# Create subplots
fig, axes = self._init_subplots(n_subplots=n_rows, ncols=n_columns, **kwargs)
# Loop channels & combos
for row_idx, channel in enumerate(channels):
for col_idx, combo in enumerate(additional_combinations):
ax = axes[row_idx][col_idx] if n_columns > 1 else axes[row_idx][0]
indexers = dict(zip(additional_dims, combo, strict=False))
indexers["channel"] = channel
# Select X data (constant_data)
x_data = self.idata.constant_data.channel_data.sel(**indexers)
# Select Y data (posterior contributions) and scale if needed
y_data = self.idata.posterior[channel_contribution].sel(**indexers)
# Flatten chain & draw by taking mean (or sum, up to design)
y_data = y_data.mean(dim=["chain", "draw"])
# Ensure X and Y have matching date coords
x_data = x_data.broadcast_like(y_data)
y_data = y_data.broadcast_like(x_data)
# Scatter
ax.scatter(
x_data.values.flatten(),
y_data.values.flatten(),
alpha=0.8,
color=f"C{row_idx}",
)
title = self._build_subplot_title(
dims=["channel", *additional_dims],
combo=(channel, *combo),
fallback_title="Channel Saturation Curves",
)
ax.set_title(title)
ax.set_xlabel("Channel Data (X)")
ax.set_ylabel("Channel Contributions (Y)")
return fig, axes
[docs]
def saturation_curves(
self,
curve: xr.DataArray,
original_scale: bool = False,
n_samples: int = 10,
hdi_probs: float | list[float] | None = None,
random_seed: np.random.Generator | None = None,
colors: Iterable[str] | None = None,
subplot_kwargs: dict | None = None,
rc_params: dict | None = None,
**plot_kwargs,
) -> tuple[plt.Figure, np.ndarray]:
"""
Overlay saturation‑curve scatter‑plots with posterior‑predictive sample curves and HDI bands.
**allowing** you to customize figsize and font sizes.
Parameters
----------
curve : xr.DataArray
Posterior‑predictive curves (e.g. dims `("chain","draw","x","channel","geo")`).
original_scale : bool, default=False
Plot `channel_contribution_original_scale` if True, else `channel_contribution`.
n_samples : int, default=10
Number of sample‑curves per subplot.
hdi_probs : float or list of float, optional
Credible interval probabilities (e.g. 0.94 or [0.5, 0.94]).
If None, uses ArviZ's default (0.94).
random_seed : np.random.Generator, optional
RNG for reproducible sampling. If None, uses `np.random.default_rng()`.
colors : iterable of str, optional
Colors for the sample & HDI plots.
subplot_kwargs : dict, optional
Passed to `plt.subplots` (e.g. `{"figsize": (10,8)}`).
Merged with the function's own default sizing.
rc_params : dict, optional
Temporary `matplotlib.rcParams` for this plot.
Example keys: `"xtick.labelsize"`, `"ytick.labelsize"`,
`"axes.labelsize"`, `"axes.titlesize"`.
**plot_kwargs
Any other kwargs forwarded to `plot_curve`
(for instance `same_axes=True`, `legend=True`, etc.).
Returns
-------
fig : plt.Figure
Matplotlib figure with your grid.
axes : np.ndarray of plt.Axes
Array of shape `(n_channels, n_geo)`.
"""
from pymc_marketing.plot import plot_hdi, plot_samples
if not hasattr(self.idata, "constant_data"):
raise ValueError(
"No 'constant_data' found in 'self.idata'. "
"Please ensure 'self.idata' contains the constant_data group."
)
contrib_var = (
"channel_contribution_original_scale"
if original_scale
else "channel_contribution"
)
if original_scale and not hasattr(self.idata.posterior, contrib_var):
raise ValueError(
f"""No posterior.{contrib_var} data found in 'self.idata'.
Add a original scale deterministic:
mmm.add_original_scale_contribution_variable(
var=[
"channel_contribution",
...
]
)
"""
)
curve_data = (
curve * self.idata.constant_data.target_scale if original_scale else curve
)
curve_data = curve_data.rename("saturation_curve")
# — 1. figure out grid shape based on scatter data dimensions —
cdims = self.idata.constant_data.channel_data.dims
additional_dims = [d for d in cdims if d not in ("date", "channel")]
if additional_dims:
additional_coords = [
self.idata.constant_data.coords[d].values for d in additional_dims
]
combos = list(itertools.product(*additional_coords))
else:
# No extra dims: single combination
combos = [()]
channels = self.idata.constant_data.coords["channel"].values
n_rows, n_cols = len(channels), len(combos)
# — 2. merge subplot_kwargs —
user_subplot = subplot_kwargs or {}
# Handle user-specified ncols/nrows
if "ncols" in user_subplot:
# User specified ncols, calculate nrows
ncols = user_subplot["ncols"]
nrows = int(np.ceil((n_rows * n_cols) / ncols))
user_subplot.pop("ncols") # Remove to avoid conflict
elif "nrows" in user_subplot:
# User specified nrows, calculate ncols
nrows = user_subplot["nrows"]
ncols = int(np.ceil((n_rows * n_cols) / nrows))
user_subplot.pop("nrows") # Remove to avoid conflict
else:
# Use our calculated grid
nrows, ncols = n_rows, n_cols
# Set default figsize based on final grid dimensions
default_subplot = {"figsize": (ncols * 4, nrows * 3)}
subkw = {**default_subplot, **user_subplot}
# — 3. create subplots ourselves —
rc_params = rc_params or {}
with plt.rc_context(rc_params):
fig, axes = plt.subplots(nrows=nrows, ncols=ncols, **subkw)
# ensure a 2D array
if nrows == 1 and ncols == 1:
axes = np.array([[axes]])
elif nrows == 1:
axes = axes.reshape(1, -1)
elif ncols == 1:
axes = axes.reshape(-1, 1)
# Flatten axes for easier iteration
axes_flat = axes.flatten()
# — 4. prepare random number generator —
if random_seed is None:
random_seed = np.random.default_rng()
# — 5. prepare hdi_probs as list —
if hdi_probs is not None and not isinstance(hdi_probs, list):
hdi_probs = [hdi_probs]
# — 6. plot curves and scatter for each subplot —
_x_data = (
self.idata.constant_data.channel_data
if original_scale
else (
self.idata.constant_data.channel_data
/ self.idata.constant_data.channel_scale
)
)
# Generate colors for all channels if not provided
if colors is None:
colors = [f"C{i}" for i in range(n_rows)]
# Create a mapping of subplot index for iteration
subplot_idx = 0
for _i, (ch, color) in enumerate(zip(channels, colors, strict=False)):
for _j, combo in enumerate(combos):
if subplot_idx >= len(axes_flat):
break # No more axes available
ax = axes_flat[subplot_idx]
subplot_idx += 1
# Build indexers for this subplot
idx = dict(zip(additional_dims, combo, strict=False))
idx["channel"] = ch
# Select and broadcast curve data for this channel
# The curve might not have all dimensions, so we only select what exists
curve_idx = {}
for dim, val in idx.items():
if dim in curve_data.dims:
curve_idx[dim] = val
subplot_curve = curve_data.sel(**curve_idx)
# Scale X coordinate if in original scale
if original_scale:
# Get the channel scale for this specific subplot
channel_scale = self.idata.constant_data.channel_scale.sel(**idx)
# The X coordinate is in scaled space (0 to 1 typically)
# We need to multiply by channel_scale to get original scale
x_original = subplot_curve.coords["x"] * channel_scale
# Create a new DataArray with scaled X coordinate
subplot_curve = subplot_curve.assign_coords(x=x_original)
# Plot sample curves
if n_samples > 0:
plot_samples(
subplot_curve,
non_grid_names="x",
n=n_samples,
rng=random_seed,
axes=np.array([[ax]]),
colors=[color],
same_axes=False,
legend=False,
**plot_kwargs,
)
# Plot HDI bands if requested
if hdi_probs is not None:
for hdi_prob in hdi_probs:
plot_hdi(
subplot_curve,
non_grid_names="x",
hdi_prob=hdi_prob,
axes=np.array([[ax]]),
colors=[color],
same_axes=False,
legend=False,
**plot_kwargs,
)
# Get scatter data
x_data = _x_data.sel(**idx)
y = (
self.idata.posterior[contrib_var]
.sel(**idx)
.mean(dim=["chain", "draw"])
)
x_data, y = x_data.broadcast_like(y), y.broadcast_like(x_data)
# Add scatter plot
ax.scatter(
x_data.values.flatten(),
y.values.flatten(),
alpha=0.8,
color=color,
)
title = self._build_subplot_title(
dims=["channel", *additional_dims],
combo=(ch, *combo),
fallback_title="Channel Saturation Curves",
)
ax.set_title(title)
ax.set_xlabel("Channel Data (X)")
ax.set_ylabel("Channel Contribution (Y)")
# Hide any unused axes
for ax_idx in range(subplot_idx, len(axes_flat)):
axes_flat[ax_idx].set_visible(False)
return fig, axes
[docs]
def saturation_curves_scatter(
self, original_scale: bool = False, **kwargs
) -> tuple[Figure, NDArray[Axes]]:
"""
Plot scatter plots of channel contributions vs. channel data.
.. deprecated:: 0.1.0
Will be removed in version 0.2.0. Use :meth:`saturation_scatterplot` instead.
Parameters
----------
channel_contribution : str, optional
Name of the channel contribution variable in the InferenceData.
additional_dims : list[str], optional
Additional dimensions to consider beyond 'channel'.
additional_combinations : list[tuple], optional
Specific combinations of additional dimensions to plot.
**kwargs
Additional keyword arguments passed to _init_subplots.
Returns
-------
fig : plt.Figure
The matplotlib figure.
axes : np.ndarray
Array of matplotlib axes.
"""
import warnings
warnings.warn(
"saturation_curves_scatter is deprecated and will be removed in version 0.2.0. "
"Use saturation_scatterplot instead.",
DeprecationWarning,
stacklevel=2,
)
# Note: channel_contribution, additional_dims, and additional_combinations
# are not used by saturation_scatterplot, so we don't pass them
return self.saturation_scatterplot(original_scale=original_scale, **kwargs)
[docs]
def budget_allocation(
self,
samples: xr.Dataset,
scale_factor: float | None = None,
figsize: tuple[float, float] = (12, 6),
ax: plt.Axes | None = None,
original_scale: bool = True,
) -> tuple[Figure, plt.Axes]:
"""Plot the budget allocation and channel contributions.
Creates a bar chart comparing allocated spend and channel contributions
for each channel. If additional dimensions besides 'channel' are present,
creates a subplot for each combination of these dimensions.
Parameters
----------
samples : xr.Dataset
The dataset containing the channel contributions and allocation values.
Expected to have 'channel_contribution' and 'allocation' variables.
scale_factor : float, optional
Scale factor to convert to original scale, if original_scale=True.
If None and original_scale=True, assumes scale_factor=1.
figsize : tuple[float, float], optional
The size of the figure to be created. Default is (12, 6).
ax : plt.Axes, optional
The axis to plot on. If None, a new figure and axis will be created.
Only used when no extra dimensions are present.
original_scale : bool, optional
A boolean flag to determine if the values should be plotted in their
original scale. Default is True.
Returns
-------
fig : matplotlib.figure.Figure
The Figure object containing the plot.
axes : matplotlib.axes.Axes or numpy.ndarray of matplotlib.axes.Axes
The Axes object with the plot, or array of Axes for multiple subplots.
"""
# Get the channels from samples
if "channel" not in samples.dims:
raise ValueError(
"Expected 'channel' dimension in samples dataset, but none found."
)
# Check for required variables in samples
if not any(
"channel_contribution" in var_name for var_name in samples.data_vars
):
raise ValueError(
"Expected a variable containing 'channel_contribution' in samples, but none found."
)
if "allocation" not in samples:
raise ValueError(
"Expected 'allocation' variable in samples, but none found."
)
# Find the variable containing 'channel_contribution' in its name
channel_contrib_var = next(
var_name
for var_name in samples.data_vars
if "channel_contribution" in var_name
)
# Identify extra dimensions beyond 'channel'
channel_contribution_dims = list(samples[channel_contrib_var].dims)
allocation_dims = list(samples.allocation.dims)
# Always remove 'date' and 'sample' from consideration as these are always averaged over
if "date" in channel_contribution_dims:
channel_contribution_dims.remove("date")
if "sample" in channel_contribution_dims:
channel_contribution_dims.remove("sample")
extra_dims = [dim for dim in channel_contribution_dims if dim != "channel"]
# If no extra dimensions or using provided axis, create a single plot
if not extra_dims or ax is not None:
if ax is None:
fig, ax = plt.subplots(figsize=figsize)
else:
fig = ax.get_figure()
# Average over all dimensions except channel
reduction_dims = [
dim for dim in samples[channel_contrib_var].dims if dim != "channel"
]
channel_contribution = (
samples[channel_contrib_var].mean(dim=reduction_dims).to_numpy()
)
# Ensure channel_contribution is 1D
if channel_contribution.ndim > 1:
channel_contribution = channel_contribution.flatten()
# Apply scale factor if in original scale
if original_scale and scale_factor is not None:
channel_contribution *= scale_factor
# Get allocated spend
allocation_reduction_dims = [
dim for dim in allocation_dims if dim != "channel"
]
if allocation_reduction_dims:
allocated_spend = samples.allocation.mean(
dim=allocation_reduction_dims
).to_numpy()
else:
allocated_spend = samples.allocation.to_numpy()
# Ensure allocated_spend is 1D
if allocated_spend.ndim > 1:
allocated_spend = allocated_spend.flatten()
# Plot single chart
self._plot_budget_allocation_bars(
ax,
samples.coords["channel"].values,
allocated_spend,
channel_contribution,
)
return fig, ax
# For multiple dimensions, create a grid of subplots
# Determine layout based on number of extra dimensions
if len(extra_dims) == 1:
# One extra dimension: use for rows
dim_values = [samples.coords[extra_dims[0]].values]
nrows = len(dim_values[0])
ncols = 1
subplot_dims = [extra_dims[0], None]
elif len(extra_dims) == 2:
# Two extra dimensions: one for rows, one for columns
dim_values = [
samples.coords[extra_dims[0]].values,
samples.coords[extra_dims[1]].values,
]
nrows = len(dim_values[0])
ncols = len(dim_values[1])
subplot_dims = extra_dims
else:
# Three or more: use first two for rows/columns, average over the rest
dim_values = [
samples.coords[extra_dims[0]].values,
samples.coords[extra_dims[1]].values,
]
nrows = len(dim_values[0])
ncols = len(dim_values[1])
subplot_dims = [extra_dims[0], extra_dims[1]]
# Calculate figure size based on number of subplots
subplot_figsize = (figsize[0] * max(1, ncols), figsize[1] * max(1, nrows))
fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=subplot_figsize)
# Make axes indexable even for 1x1 grid
if nrows == 1 and ncols == 1:
axes = np.array([[axes]])
elif nrows == 1:
axes = axes.reshape(1, -1)
elif ncols == 1:
axes = axes.reshape(-1, 1)
# Create a subplot for each combination of dimension values
for i, row_val in enumerate(dim_values[0]):
for j, col_val in enumerate(
dim_values[1] if len(dim_values) > 1 else [None]
):
ax = axes[i, j]
# Select data for this subplot
selection = {subplot_dims[0]: row_val}
if col_val is not None:
selection[subplot_dims[1]] = col_val
# Select channel contributions for this subplot
subset = samples[channel_contrib_var].sel(**selection)
# Average over remaining dimensions
remaining_dims = [
dim
for dim in subset.dims
if dim != "channel" and dim not in selection
]
channel_contribution = subset.mean(dim=remaining_dims).to_numpy()
# Ensure 1D
if channel_contribution.ndim > 1:
channel_contribution = channel_contribution.flatten()
# Apply scale factor if needed
if original_scale and scale_factor is not None:
channel_contribution *= scale_factor
# Select allocation data for this subplot
if all(dim in allocation_dims for dim in selection):
# Only select dimensions that exist in allocation
allocation_selection = {
k: v for k, v in selection.items() if k in allocation_dims
}
allocation_subset = samples.allocation.sel(**allocation_selection)
# Average over remaining dimensions
allocation_remaining_dims = [
dim for dim in allocation_subset.dims if dim != "channel"
]
allocated_spend = allocation_subset.mean(
dim=allocation_remaining_dims
).to_numpy()
else:
# If dimensions don't match, use the overall average
allocation_reduction_dims = [
dim for dim in allocation_dims if dim != "channel"
]
allocated_spend = samples.allocation.mean(
dim=allocation_reduction_dims
).to_numpy()
# Ensure 1D
if allocated_spend.ndim > 1:
allocated_spend = allocated_spend.flatten()
# Plot on this subplot
self._plot_budget_allocation_bars(
ax,
samples.coords["channel"].values,
allocated_spend,
channel_contribution,
)
# Add subplot title based on dimension values
title_parts = []
if subplot_dims[0] is not None:
title_parts.append(f"{subplot_dims[0]}={row_val}")
if subplot_dims[1] is not None:
title_parts.append(f"{subplot_dims[1]}={col_val}")
if title_parts:
ax.set_title(", ".join(title_parts))
fig.tight_layout()
return fig, axes
def _plot_budget_allocation_bars(
self,
ax: plt.Axes,
channels: NDArray,
allocated_spend: NDArray,
channel_contribution: NDArray,
) -> None:
"""Plot budget allocation bars on a given axis.
Parameters
----------
ax : plt.Axes
The axis to plot on.
channels : NDArray
Array of channel names.
allocated_spend : NDArray
Array of allocated spend values.
channel_contribution : NDArray
Array of channel contribution values.
"""
bar_width = 0.35
opacity = 0.7
index = range(len(channels))
# Plot allocated spend
bars1 = ax.bar(
index,
allocated_spend,
bar_width,
color="C0",
alpha=opacity,
label="Allocated Spend",
)
# Create twin axis for contributions
ax2 = ax.twinx()
# Plot contributions
bars2 = ax2.bar(
[i + bar_width for i in index],
channel_contribution,
bar_width,
color="C1",
alpha=opacity,
label="Channel Contribution",
)
# Labels and formatting
ax.set_xlabel("Channels")
ax.set_ylabel("Allocated Spend", color="C0", labelpad=10)
ax2.set_ylabel("Channel Contributions", color="C1", labelpad=10)
# Set x-ticks in the middle of the bars
ax.set_xticks([i + bar_width / 2 for i in index])
ax.set_xticklabels(channels)
ax.tick_params(axis="x", rotation=90)
# Turn off grid and add legend
ax.grid(False)
ax2.grid(False)
bars = [bars1, bars2]
labels = ["Allocated Spend", "Channel Contributions"]
ax.legend(bars, labels, loc="best")
[docs]
def allocated_contribution_by_channel_over_time(
self,
samples: xr.Dataset,
scale_factor: float | None = None,
lower_quantile: float = 0.025,
upper_quantile: float = 0.975,
original_scale: bool = True,
figsize: tuple[float, float] = (10, 6),
ax: plt.Axes | None = None,
) -> tuple[Figure, plt.Axes | NDArray[Axes]]:
"""Plot the allocated contribution by channel with uncertainty intervals.
This function visualizes the mean allocated contributions by channel along with
the uncertainty intervals defined by the lower and upper quantiles.
If additional dimensions besides 'channel', 'date', and 'sample' are present,
creates a subplot for each combination of these dimensions.
Parameters
----------
samples : xr.Dataset
The dataset containing the samples of channel contributions.
Expected to have 'channel_contribution' variable with dimensions
'channel', 'date', and 'sample'.
scale_factor : float, optional
Scale factor to convert to original scale, if original_scale=True.
If None and original_scale=True, assumes scale_factor=1.
lower_quantile : float, optional
The lower quantile for the uncertainty interval. Default is 0.025.
upper_quantile : float, optional
The upper quantile for the uncertainty interval. Default is 0.975.
original_scale : bool, optional
If True, the contributions are plotted on the original scale. Default is True.
figsize : tuple[float, float], optional
The size of the figure to be created. Default is (10, 6).
ax : plt.Axes, optional
The axis to plot on. If None, a new figure and axis will be created.
Only used when no extra dimensions are present.
Returns
-------
fig : matplotlib.figure.Figure
The Figure object containing the plot.
axes : matplotlib.axes.Axes or numpy.ndarray of matplotlib.axes.Axes
The Axes object with the plot, or array of Axes for multiple subplots.
"""
# Check for expected dimensions and variables
if "channel" not in samples.dims:
raise ValueError(
"Expected 'channel' dimension in samples dataset, but none found."
)
if "date" not in samples.dims:
raise ValueError(
"Expected 'date' dimension in samples dataset, but none found."
)
if "sample" not in samples.dims:
raise ValueError(
"Expected 'sample' dimension in samples dataset, but none found."
)
# Check if any variable contains channel contributions
if not any(
"channel_contribution" in var_name for var_name in samples.data_vars
):
raise ValueError(
"Expected a variable containing 'channel_contribution' in samples, but none found."
)
# Get channel contributions data
channel_contrib_var = next(
var_name
for var_name in samples.data_vars
if "channel_contribution" in var_name
)
# Identify extra dimensions beyond 'channel', 'date', and 'sample'
all_dims = list(samples[channel_contrib_var].dims)
ignored_dims = {"channel", "date", "sample"}
extra_dims = [dim for dim in all_dims if dim not in ignored_dims]
# If no extra dimensions or using provided axis, create a single plot
if not extra_dims or ax is not None:
if ax is None:
fig, ax = plt.subplots(figsize=figsize)
else:
fig = ax.get_figure()
channel_contribution = samples[channel_contrib_var]
# Apply scale factor if in original scale
if original_scale and scale_factor is not None:
channel_contribution = channel_contribution * scale_factor
# Plot mean values by channel
channel_contribution.mean(dim="sample").plot(hue="channel", ax=ax)
# Add uncertainty intervals for each channel
for channel in samples.coords["channel"].values:
ax.fill_between(
x=channel_contribution.date.values,
y1=channel_contribution.sel(channel=channel).quantile(
lower_quantile, dim="sample"
),
y2=channel_contribution.sel(channel=channel).quantile(
upper_quantile, dim="sample"
),
alpha=0.1,
)
ax.set_xlabel("Date")
ax.set_ylabel("Channel Contribution")
ax.set_title("Allocated Contribution by Channel Over Time")
fig.tight_layout()
return fig, ax
# For multiple dimensions, create a grid of subplots
# Determine layout based on number of extra dimensions
if len(extra_dims) == 1:
# One extra dimension: use for rows
dim_values = [samples.coords[extra_dims[0]].values]
nrows = len(dim_values[0])
ncols = 1
subplot_dims = [extra_dims[0], None]
elif len(extra_dims) == 2:
# Two extra dimensions: one for rows, one for columns
dim_values = [
samples.coords[extra_dims[0]].values,
samples.coords[extra_dims[1]].values,
]
nrows = len(dim_values[0])
ncols = len(dim_values[1])
subplot_dims = extra_dims
else:
# Three or more: use first two for rows/columns, average over the rest
dim_values = [
samples.coords[extra_dims[0]].values,
samples.coords[extra_dims[1]].values,
]
nrows = len(dim_values[0])
ncols = len(dim_values[1])
subplot_dims = [extra_dims[0], extra_dims[1]]
# Calculate figure size based on number of subplots
subplot_figsize = (figsize[0] * max(1, ncols), figsize[1] * max(1, nrows))
fig, axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=subplot_figsize)
# Make axes indexable even for 1x1 grid
if nrows == 1 and ncols == 1:
axes = np.array([[axes]])
elif nrows == 1:
axes = axes.reshape(1, -1)
elif ncols == 1:
axes = axes.reshape(-1, 1)
# Create a subplot for each combination of dimension values
for i, row_val in enumerate(dim_values[0]):
for j, col_val in enumerate(
dim_values[1] if len(dim_values) > 1 else [None]
):
ax = axes[i, j]
# Select data for this subplot
selection = {subplot_dims[0]: row_val}
if col_val is not None:
selection[subplot_dims[1]] = col_val
# Select channel contributions for this subplot
subset = samples[channel_contrib_var].sel(**selection)
# Apply scale factor if needed
if original_scale and scale_factor is not None:
subset = subset * scale_factor
# Plot mean values by channel for this subset
subset.mean(dim="sample").plot(hue="channel", ax=ax)
# Add uncertainty intervals for each channel
for channel in samples.coords["channel"].values:
channel_data = subset.sel(channel=channel)
ax.fill_between(
x=channel_data.date.values,
y1=channel_data.quantile(lower_quantile, dim="sample"),
y2=channel_data.quantile(upper_quantile, dim="sample"),
alpha=0.1,
)
# Add subplot title based on dimension values
title_parts = []
if subplot_dims[0] is not None:
title_parts.append(f"{subplot_dims[0]}={row_val}")
if subplot_dims[1] is not None:
title_parts.append(f"{subplot_dims[1]}={col_val}")
base_title = "Allocated Contribution by Channel Over Time"
if title_parts:
ax.set_title(f"{base_title} - {', '.join(title_parts)}")
else:
ax.set_title(base_title)
ax.set_xlabel("Date")
ax.set_ylabel("Channel Contribution")
fig.tight_layout()
return fig, axes
[docs]
def plot_sensitivity_analysis(
self,
hdi_prob: float = 0.94,
ax: plt.Axes | None = None,
marginal: bool = False,
percentage: bool = False,
sharey: bool = True,
) -> tuple[Figure, NDArray[Axes]] | plt.Axes:
"""
Plot counterfactual uplift or marginal effects curves.
Handles additional (non sweep/date/chain/draw) dimensions by creating one subplot
per combination of those dimensions - consistent with other plot_* methods.
Parameters
----------
hdi_prob : float, default 0.94
HDI probability mass.
ax : plt.Axes, optional
Only used when there are no extra dimensions (single panel case).
marginal : bool, default False
Plot marginal effects instead of uplift.
percentage : bool, default False
Express uplift as a percentage of actual (not supported for marginal).
sharey : bool, default True
Share y-axis across subplots (only relevant for multi-panel case).
Returns
-------
(fig, axes) if multi-panel, else a single Axes (backwards compatible single-dim case).
"""
if percentage and marginal:
raise ValueError("Not implemented marginal effects in percentage scale.")
if not hasattr(self.idata, "sensitivity_analysis"):
raise ValueError(
"No sensitivity analysis results found in 'self.idata'. "
"Run 'mmm.sensitivity.run_sweep()' first."
)
results: xr.Dataset = self.idata.sensitivity_analysis # type: ignore
# Required variable presence checks
required_var = "marginal_effects" if marginal else "y"
if required_var not in results:
raise ValueError(
f"Expected '{required_var}' in sensitivity_analysis results, found: {list(results.data_vars)}"
)
if "sweep" not in results.dims:
raise ValueError(
"Sensitivity analysis results must contain 'sweep' dimension."
)
# Identify additional dimensions
ignored_dims = {"chain", "draw", "date", "sweep"}
base_data = results.marginal_effects if marginal else results.y
additional_dims = [d for d in base_data.dims if d not in ignored_dims]
# Build all coordinate combinations
if additional_dims:
additional_coords = [results.coords[d].values for d in additional_dims]
dim_combinations = list(itertools.product(*additional_coords))
else:
dim_combinations = [()]
multi_panel = len(dim_combinations) > 1
# If user provided ax but multiple panels needed, raise (consistent with other methods)
if multi_panel and ax is not None:
raise ValueError(
"Cannot use 'ax' when there are extra dimensions. "
"Let the function create its own subplots."
)
# Prepare figure/axes
if multi_panel:
fig, axes = self._init_subplots(n_subplots=len(dim_combinations), ncols=1)
if sharey:
# Align y limits later - collect mins/maxs
y_mins, y_maxs = [], []
else:
if ax is None:
fig, axes_arr = plt.subplots(figsize=(10, 6))
ax = axes_arr # type: ignore
fig = ax.get_figure() # type: ignore
axes = np.array([[ax]]) # type: ignore
sweep_values = results.coords["sweep"].values
# Helper: select subset (only dims present)
def _select(data: xr.DataArray, indexers: dict) -> xr.DataArray:
valid = {k: v for k, v in indexers.items() if k in data.dims}
return data.sel(**valid)
for row_idx, combo in enumerate(dim_combinations):
current_ax = axes[row_idx][0] if multi_panel else ax # type: ignore
indexers = (
dict(zip(additional_dims, combo, strict=False))
if additional_dims
else {}
)
if marginal:
eff = _select(results.marginal_effects, indexers)
# mean over chain/draw, sum over date (and any leftover dims not indexed)
leftover = [d for d in eff.dims if d in ("date",) and d != "sweep"]
y_mean = eff.mean(dim=["chain", "draw"]).sum(dim=leftover)
y_hdi_data = eff.sum(dim=leftover)
color = "C1"
label = "Posterior mean marginal effect"
title = "Marginal effects"
ylabel = r"Marginal effect, $\frac{d\mathbb{E}[Y]}{dX}$"
else:
y_da = _select(results.y, indexers)
leftover = [d for d in y_da.dims if d in ("date",) and d != "sweep"]
if percentage:
actual = self.idata.posterior_predictive["y"] # type: ignore
actual_sel = _select(actual, indexers)
actual_mean = actual_sel.mean(dim=["chain", "draw"]).sum(
dim=leftover
)
actual_sum = actual_sel.sum(dim=leftover)
y_mean = (
y_da.mean(dim=["chain", "draw"]).sum(dim=leftover) / actual_mean
)
y_hdi_data = y_da.sum(dim=leftover) / actual_sum
else:
y_mean = y_da.mean(dim=["chain", "draw"]).sum(dim=leftover)
y_hdi_data = y_da.sum(dim=leftover)
color = "C0"
label = "Posterior mean uplift"
title = "Sensitivity analysis"
ylabel = "Total uplift (sum over dates)"
# Ensure ordering: y_mean dimension 'sweep'
if "sweep" not in y_mean.dims:
raise ValueError("Expected 'sweep' dim after aggregation.")
current_ax.plot(sweep_values, y_mean, label=label, color=color) # type: ignore
# Plot HDI
az.plot_hdi(
sweep_values,
y_hdi_data,
hdi_prob=hdi_prob,
color=color,
fill_kwargs={"alpha": 0.4, "label": f"{hdi_prob * 100:.0f}% HDI"},
plot_kwargs={"color": color, "alpha": 0.5},
smooth=False,
ax=current_ax,
)
# Titles / labels
if additional_dims:
subplot_title = self._build_subplot_title(
additional_dims, combo, fallback_title=title
)
else:
subplot_title = title
current_ax.set_title(subplot_title) # type: ignore
if results.sweep_type == "absolute":
current_ax.set_xlabel(f"Absolute value of: {results.var_names}") # type: ignore
else:
current_ax.set_xlabel( # type: ignore
f"{results.sweep_type.capitalize()} change of: {results.var_names}"
)
current_ax.set_ylabel(ylabel) # type: ignore
# Baseline reference lines
if results.sweep_type == "multiplicative":
current_ax.axvline(x=1, color="k", linestyle="--", alpha=0.5) # type: ignore
if not marginal:
current_ax.axhline(y=0, color="k", linestyle="--", alpha=0.5) # type: ignore
elif results.sweep_type == "additive":
current_ax.axvline(x=0, color="k", linestyle="--", alpha=0.5) # type: ignore
# Format y
if percentage:
current_ax.yaxis.set_major_formatter( # type: ignore
plt.FuncFormatter(lambda v, _: f"{v:.1%}") # type: ignore
)
else:
current_ax.yaxis.set_major_formatter( # type: ignore
plt.FuncFormatter(lambda v, _: f"{v:,.1f}") # type: ignore
)
# Adjust y-lims sign aware
y_vals = y_mean.values
if np.all(y_vals < 0):
current_ax.set_ylim(top=0) # type: ignore
elif np.all(y_vals > 0):
current_ax.set_ylim(bottom=0) # type: ignore
if multi_panel and sharey:
y_mins.append(current_ax.get_ylim()[0]) # type: ignore
y_maxs.append(current_ax.get_ylim()[1]) # type: ignore
current_ax.legend(loc="best") # type: ignore
# Share y limits if requested
if multi_panel and sharey:
global_min, global_max = min(y_mins), max(y_maxs)
for row_idx in range(len(dim_combinations)):
axes[row_idx][0].set_ylim(global_min, global_max)
if multi_panel:
fig.tight_layout()
return fig, axes
else:
return ax # single axis for backwards compatibility