BaseGammaGammaModel#
- class pymc_marketing.clv.models.gamma_gamma.BaseGammaGammaModel(data, *, model_config=None, sampler_config=None, non_distributions=None)[source]#
Base class for Gamma-Gamma models.
Methods
BaseGammaGammaModel.__init__
(data, *[, ...])Initialize model configuration and sampler configuration for the model.
Convert the model configuration and sampler configuration from the attributes to keyword arguments.
Build the model from the InferenceData object.
BaseGammaGammaModel.build_model
(**kwargs)Create an instance of
pm.Model
based on provided data and model_config.Create attributes for the inference data.
Posterior distribution of mean spend values for each customer.
Posterior distribution of mean spend values for new customers.
Compute the average lifetime value for a group of one or more customers.
Compute the expected future mean spend value per customer.
Compute the expected mean spend value for a new customer.
BaseGammaGammaModel.fit
([method, fit_method])Infer model posterior.
BaseGammaGammaModel.fit_summary
(**kwargs)Compute the summary of the fit result.
BaseGammaGammaModel.graphviz
(**kwargs)Get the graphviz representation of the model.
Create the initialization kwargs from an InferenceData object.
BaseGammaGammaModel.load
(fname[, check])Create a ModelBuilder instance from a file.
BaseGammaGammaModel.load_from_idata
(idata[, ...])Create a ModelBuilder instance from an InferenceData object.
BaseGammaGammaModel.save
(fname, **kwargs)Save the model's inference data to a file.
BaseGammaGammaModel.set_idata_attrs
([idata])Set attributes on an InferenceData object.
BaseGammaGammaModel.table
(**model_table_kwargs)Get the summary table of the model.
BaseGammaGammaModel.thin_fit_result
(keep_every)Return a copy of the model with a thinned fit result.
Attributes
default_model_config
Return a class default configuration dictionary.
default_sampler_config
Default sampler configuration.
fit_result
Get the posterior fit_result.
id
Generate a unique hash value for the model.
posterior
posterior_predictive
predictions
prior
prior_predictive
version
idata
sampler_config
model_config