ModelBuilder#
- class pymc_marketing.model_builder.ModelBuilder(model_config=None, sampler_config=None)[source]#
Base class for building PyMC-Marketing models.
Child classes must implement the following methods: - default_model_config: Returns a dictionary for default model configuration. - default_sampler_config: Returns a dictionary for default sampler configuration. - build_model: Builds the model based on the provided data and model configuration. - build_from_idata: Builds the model from an InferenceData object. Needed for loading models. - fit: Fits the model based on the provided data and sampler configurations. - attrs_to_init_kwargs: Override to add additional init keyword arguments. - _serializable_model_config: Needed for saving and loading the model.
Methods
ModelBuilder.__init__
([model_config, ...])Initialize model configuration and sampler configuration for the model.
Convert the model configuration and sampler configuration from the attributes to keyword arguments.
Build the model from the InferenceData object.
ModelBuilder.build_model
(**kwargs)Create an instance of
pm.Model
based on provided data and model_config.Create attributes for the inference data.
ModelBuilder.fit
(**kwargs)Fit a model using the data passed as a parameter.
ModelBuilder.graphviz
(**kwargs)Get the graphviz representation of the model.
Create the model configuration and sampler configuration from the InferenceData to keyword arguments.
ModelBuilder.load
(fname[, check])Create a ModelBuilder instance from a file.
ModelBuilder.load_from_idata
(idata[, check])Create a ModelBuilder instance from an InferenceData object.
ModelBuilder.save
(fname, **kwargs)Save the model's inference data to a file.
ModelBuilder.set_idata_attrs
([idata])Set attributes on an InferenceData object.
ModelBuilder.table
(**model_table_kwargs)Get the summary table of the model.
Attributes
default_model_config
Return a class default configuration dictionary.
default_sampler_config
Return a class default sampler configuration dictionary.
fit_result
Get the posterior fit_result.
id
Generate a unique hash value for the model.
posterior
posterior_predictive
predictions
prior
prior_predictive
version
idata
sampler_config
model_config