RegressionModelBuilder#
- class pymc_marketing.model_builder.RegressionModelBuilder(model_config=None, sampler_config=None)[source]#
ModelBuilder class providing an easy-to-use API similar to scikit-learn for regression models.
Training data is provided in the fit method and must follow the following convention: - X: Matrix containing predictor variables - y: Target variable array
Methods
Initialize model configuration and sampler configuration for the model.
Convert the model configuration and sampler configuration from the attributes to keyword arguments.
Build model from the InferenceData object.
RegressionModelBuilder.build_model
(X, y, ...)Create an instance of
pm.Model
based on provided data and model_config.Create the fit_data group based on the input data.
Create attributes for the inference data.
RegressionModelBuilder.fit
(X[, y, ...])Fit a model using the data passed as a parameter.
RegressionModelBuilder.graphviz
(**kwargs)Get the graphviz representation of the model.
Create the model configuration and sampler configuration from the InferenceData to keyword arguments.
RegressionModelBuilder.load
(fname[, check])Create a ModelBuilder instance from a file.
Create a ModelBuilder instance from an InferenceData object.
Perform transformation on the model after sampling.
RegressionModelBuilder.predict
([X, extend_idata])Use a model to predict on unseen data and return point prediction of all the samples.
Generate posterior predictive samples on unseen data.
RegressionModelBuilder.predict_proba
([X, ...])Alias for
predict_posterior
, for consistency with scikit-learn probabilistic estimators.Sample from the model's posterior predictive distribution.
Sample from the model's prior predictive distribution.
RegressionModelBuilder.save
(fname, **kwargs)Save the model's inference data to a file.
Set attributes on an InferenceData object.
Get the summary table of the model.
Attributes
default_model_config
Return a class default configuration dictionary.
default_sampler_config
Return a class default sampler configuration dictionary.
fit_result
Get the posterior fit_result.
id
Generate a unique hash value for the model.
output_var
Returns the name of the output variable of the model.
posterior
posterior_predictive
predictions
prior
prior_predictive
version
idata
sampler_config
model_config